
Introduction to Controls Version 1.0 7-1

7
INTRODUCTION TO CONTROLS
 Demonstration Programs: Controls1 and Controls2

Introduction
On Mac OS 8/9, prior to the introduction of Mac OS 8 and the Appearance Manager, the system software
provided for only a limited range of controls (specifically, buttons, checkboxes, radio buttons, pop-up
menus, and scroll bars) and the creation and handling of these desktop objects was relatively simple and
straightforward. Mac OS 8 and the Appearance Manager, however, ushered in a very wide range of
additional controls, extended the capabilities of the old controls, and provided a generally richer control
environment. The result is that the subject of controls is now considerably more involved; accordingly,
this chapter constitutes an introduction to controls only and addresses only the more basic controls. All but
one or two of the remaining controls are addressed at Chapter 14. The list box control is addressed at
Chapter 22.

You can use the Control Manager to create and manage controls. An alternative method is to use the
Dialog Manager to more easily create and manage controls in dialogs and alerts. In this latter case, the
Dialog Manager works with the Control Manager behind the scenes. The creation and handling of controls
in dialogs and alerts will be addressed at Chapter 8 and in the demonstration program associated with
Chapter 14. The creation and handling areas of this chapter are limited to the use of the Control Manager
to create and handle controls in document or utility windows.

Every control you create must be associated with a particular window. All the controls for a window are
stored in a control list, a handle to which is stored in the window's window object.

Standard Controls
The term standard controls refers to controls whose control definition functions (see below) are provided
by the system software. The term custom controls refers to controls that you provide yourself via a
custom control definition function.

Available Standard Controls

The complete range of available standard controls is as follows.

Control Description Variants
Push button A control that appears on the screen as a rounded rectangle

with a title centred inside. When the user clicks a push
button, the application performs the action described by the
button’s title. Examples include completing operations
defined by a dialog and acknowledging an error message in
an alert.

With title only.
With colour icon to left of title.
With colour icon to right of title.

7-2 Version 1.0 Introduction to Controls

Checkbox A control that appears onscreen as a small square with an
accompanying title. A checkbox displays one of three
settings: on (indicated by a checkmark inside the box), off,
or mixed (indicated by a dash inside the box).

Non-auto-toggling.
Auto-toggling

Radio button A control that appears onscreen as a small circle. A radio
button displays one of three settings: on (indicated by a
black dot inside the circle), off, or mixed (indicated by a
dash inside the circle). A radio button is always a part of a
group of related radio buttons in which only one button can
be on at a time.

Non-auto-toggling.
Auto-toggling

Scroll bar A control with which the user can change the portion of a
document displayed within a window. A scroll bar is a
light gray rectangle with scroll arrows at each end.
Windows can have a horizontal scroll bar, a vertical scroll
bar, or both. A vertical scroll bar lies along the right side of
a window. A horizontal scroll bar runs along the bottom of
a window. Inside the scroll bar is a rectangle called the
scroll box (Mac OS 8/9) or scroller (Mac OS X). The rest
of the scroll bar is called the gray area (Mac OS 8/9) or
track (Mac OS X). The user can move through a document
by manipulating the parts of the scroll bar.

Without live feedback.
With live feedback.

Pop-up menu
button

A control that is used to display a menu elsewhere than in
the menu bar.

Fixed width.
Variable width.
Add resource.
Use window font.

Bevel button A button containing a self-descriptive icon, picture, text, or
any combination of the three, that performs an action when
pressed.

With small bevel (Mac OS 8/9 only).
With normal bevel.
With large bevel (Mac OS 8/9 only).
The above with a pop-up menu either to
the right or below.

Slider A control that displays a range of values, magnitudes, or
positions. A horizontally- and vertically-mobile indicator
is used to increase or decrease the value.

Without live feedback.
With live feedback.
With tick marks.
With directional indicator.
With non-directional indicator.

Disclosure
triangle

A triangular control governing how items are displayed in a
list. The disclosure triangle can point right or left and
down. When the disclosure triangle points to the right or
left, one item is displayed in the list. When the arrow
points downward, the original item and its subitems are
displayed in the list.

Right-facing.
Left-facing.
Right-facing, auto-tracking.
Left-facing, auto-tracking.

Progress bar. A control indicating that a lengthy operation is occurring.
Two types of progress bar can be used: an indeterminate
progress bar reveals that an operation is occurring but does
not indicate its duration; a determinate progress bar
displays how much of the operation has been completed.
Progress bars are also used as relevance bars on Mac OS
8/9.

(One variant only. However, the
progress bar can be made determinate or
non-determinate via a call to
SetControlData.)

Little arrows Up- and down-arrows accompanying a text box that
contains a value, such as a date. Clicking the up arrow
increases the value displayed. Clicking the down arrow
decreases the value displayed.

(One variant only.)

Chasing arrows A control that indicates through a simple animation that a
background process is in progress.

(One variant only.)

Introduction to Controls Version 1.0 7-3

Tab A control that appears as a row of folder tabs on top of a
pane. It allows multiple panes to appear in the same
window.

Large, north facing.
Small, north facing.
Large, south facing.
Small, south facing.
Large, east facing.
Small, east facing.
Large, west facing.
Small, west facing.

Separator line A control that draws a vertical or horizontal line used to
visually separate groups of controls.

(One variant only.)

Primary group
box

A control that consists of a rectangular two-pixel-wide
frame that may or may not contain a title. It is used to
provide a well-defined area in a dialog into which text,
pictures, icons or other controls can be embedded.

With text title.
With checkbox title.
With pop-up menu button title.

Secondary group
box

A control that consists of a rectangular one-pixel-wide
frame which may or may not contain a title. It is used to
provide a well-defined area in a dialog into which text,
pictures, icons or other controls can be embedded.

With text title.
With checkbox title.
With pop-up button title.

Image well A control that is used to display non-text visual content
surrounded by a rectangular frame.

(One variant only.)

Pop-up arrow A control that simply draws the pop-up glyph. Large, east-facing.
Large, west-facing.
Large, north-facing.
Large, south-facing.
Small, east -facing.
Small, west -facing.
Small, north -facing.
Small, south -facing.

Placard A rectangular control used to delineate an area in which
information may be displayed.

(One variant only.)

Clock A control that combines the features of little arrows and an
edit text field into a control which displays a date and/or
time.

Displays hours, minutes.
Displays hours, minutes, seconds.
Displays date, month, year.
Displays month, year.

User pane A general purpose control which can be used as the root
control for a window and as an embedder control in
which other controls may be embedded. It can also be used
to hook in callback functions for drawing, hit testing, etc.

(One variant only.)

Edit text A control that appears as a rectangular box in which the
user enters text to provide information to an application.

Normal
For passwords.
For inline input.

Static text A control that displays static (unchangeable by the user)
text labels in a window.

(One variant only.)

Picture A control used to display pictures. Tracking.
Non-tracking.

Icon A control used to display icons. Tracking.
Non-tracking.
Icon suite, tracking.
Icon suite, non-tracking.
All icon types, tracking.
All icon types, non-tracking.

Window header A rectangular control that is positioned along the top of a
window's content region and which is used to delineate an
area in which information may be displayed.

Window header.
Window list view header.

List box A control that combines a rectangular frame, scroll bar(s),
and a scrolling list.

Non-autosizing.
Autosizing.

Radio Group A control that implements a radio button group. (One variant only.)

7-4 Version 1.0 Introduction to Controls

Scrolling text box A control that implements a scrolling text box. Non-auto-scrolling.
Auto-scrolling.

Data Browser A control that implements a user interface component for
browsing (optionally) hiearchical data structures.
Note: This control is not addressed in this book.

Disclosure button A button used to hide or show specific content. Available
on Mac OS X only.

(One variant only)

Edit Unicode text Similar to the edit text controls, except that it handles
Unicode text. Available on Mac OS X only.

(One variant only)

Relevance bar. A control that indicates a level of relevance. Available on
Mac OS X only.

(One variant only.)

Round button Similar to a push button, except that it is round. Available
on Mac OS X only.

Normal size.
Large size.

Definition of the Term "Controls"

On Mac OS 8/9, prior to the introduction of Mac OS 8 and the Appearance Manager, a control was defined
as an "on-screen object which the user can manipulate to cause an immediate action or to change settings
to modify a future action". Given this previous definition, the question arises as to why such objects as, for
example, separator lines and window headers are now implemented as controls. On the surface, it may
appear that these objects are purely visual entities.

Part of the answer to that question has to do with the matter of Mac OS 8/9 theme-compliance introduced
with the Appearance Manager. For example, using the provided separator line "control" to draw separator
lines will ensure that those lines are drawn with the correct Platinum appearance (and, on Mac OS X, the
correct Aqua "look") in both the activated and deactivated modes.

Another part of the answer has to do with the concept of embedding (see below). The window header
control, for example, is not just the visual entity it might at first appear to be; it is actually a control in
which other controls may be embedded. (As will be seen, the ability to embed other controls is a powerful
feature of some of the controls introduced with Mac OS 8 and the Appearance Manager.)

Since many of the new controls are not really controls "which the user can manipulate", a more accurate
blanket definition might now be "any element of the user interface that is implemented by a control
definition function" (see below).

Controls Addressed in This Chapter

Of the controls listed above, only those that might be termed the basic controls (push buttons, checkboxes,
radio buttons, scroll bars, and pop-up menu buttons), together with primary group boxes (text title
variant) and user panes, will be addressed in this chapter and its associated demonstration programs.
These controls, with the exception of the user pane (which is invisible), are illustrated at Figs 1 and 2.

CHECKBOXES

SCROLL BAR

PUSH BUTTONS

RADIO BUTTONS

POP-UP MENU

Basic variant
set as default
button

On state

Off state

Mixed state

On state

Off state

Mixed state

PRIMARY GROUP BOX
(TEXT TITLE VARIANT)

Left colour
icon variant

Right colour
icon variant

Basic variant

FIG 1 - THE BASIC CONTROLS AND THE PRIMARY GROUP BOX (TEXT TITLE VARIANT) (MAC OS 8/9)

Introduction to Controls Version 1.0 7-5

FIG 2 - THE BASIC CONTROLS AND THE PRIMARY GROUP BOX (TEXT TITLE VARIANT) (MAC OS X)

CHECKBOXES

PUSH BUTTONS

Basic variant
set as default
button

On state

Off state

Left colour
icon variant

Right colour
icon variant

Basic variant

SCROLL BAR

RADIO BUTTONS

POP-UP MENU

On state

Off state

PRIMARY GROUP BOX
(TEXT TITLE VARIANT)

Mixed state

Mixed state

The Control Definition Function
Control definition functions (CDEFs), which are stored as resources of type 'CDEF', determine the
appearance and behaviour of a control.

Just as a window definition function can describe variations of the same basic window, a CDEF can use a
variation code to describe variations of the same control. You specify a particular control with a control
definition ID, which is an integer containing the resource ID of the in the upper 12 bits and the variation
code in the lower four bits.

The control definition ID is arrived at by multiplying the resource ID by 16 and adding the variation code.
The following shows the control definition IDs for the standard controls and variants addressed in this
chapter and its associated demonstration programs, together with the derivation of those IDs.

CDEF
Resource ID

Variation
Code

Control Definition ID
(Value)

Control Definition ID
(Constant)

23 0 23 * 16 + 0 = 368 kControlPushButtonProc
23 4 23 * 16 + 4 = 374 kControlPushButLeftIconProc
23 5 23 * 16 + 5 = 375 kControlPushButRightIconProc

23 1 23 * 16 + 1 = 369 kControlCheckBoxProc

23 3 23 * 16 + 3 = 371 kControlCheckBoxAutoToggleProc

23 2 23 * 16 + 2 = 370 kControlRadioButtonProc

23 4 23 * 16 + 4 = 372 kControlRadioAutoToggleButtonProc

24 0 24 * 16 + 0 = 384 kControlScrollBarProc
24 2 24 * 16 + 2 = 386 kControlScrollBarLiveProc

25 0 25 * 16 + 0 = 400 kControlPopupButtonProc
25 1 25 * 16 + 1 = 401 kControlPopupButtonProc +

kControlPopupFixedWidthVariant
25 2 25 * 16 + 2 = 402 kControlPopupButtonProc +

kControlPopupVariableWidthVariant
25 4 25 * 16 + 4 = 404 kControlPopupButtonProc +

kControlPopupUseAddResMenuVariant
25 8 25 * 16 + 8 = 408 kControlPopupButtonProc +

kControlPopupUseWFontVariant

10 0 10 * 16 + 0 = 160 kControlGroupBoxTextTitleProc

16 0 16 * 16 + 0 = 256 kControlUserPaneProc

Note that the a single CDEF caters for both horizontal and vertical scroll bars. The CDEF determines
whether a scroll bar is vertical or horizontal from the rectangle you specify when you create the control.

7-6 Version 1.0 Introduction to Controls

The Basic Controls, Primary Group Boxes (Text Title Variant), and User Panes

Push Buttons

You normally use push buttons in alerts and dialogs.

In windows and dialogs containing push buttons, you should designate one push button as the default push
button, that is, the push button the user is most likely to click. On Mac OS 8/9, the default push button is
outlined. On Mac OS X it is coloured and pulsing. (See Fig 1.)

In your application, pressing the Enter and Return keys should result in the same action as clicking on the
the default push button.

Checkboxes

Checkboxes are typically used in dialogs. Checkboxes provide alternative choices and act like toggle
switches. Each checkbox must have a title, which should reflect two clearly opposite states.

Non-Auto-Toggling Variant

When the non-auto-toggling variant is being used, and when the user clicks a checkbox in the off state,
your application should call SetControlValue to set the control to the on state and place a checkmark in the
box (see Fig 1). When the user again clicks the checkbox, your application should call SetControlValue to
set the control to the off state and remove the checkmark from the box.

SetControlValue may also be used to place a dash in the box to indicate that the control is in the mixed state
(see Fig 1). The mixed state is a special state that indicates that a selected range of items has some in the
on state and some in the off state. For example, a text formatting checkbox for bold text would be in the
mixed state if a text selection contained both bold and non-bold text.

Auto-Toggling Variant

When the auto-toggling variant is being used, checkboxes automatically change between their various
states (on, off, and mixed) in response to user actions. Your application need only call the function
GetControl32BitValue to get the checkbox's new state. There is no need to programmatically change the
control's value after tracking successfully.

Radio Buttons

Like checkboxes, radio buttons are typically used in dialogs. Unlike checkboxes, radio buttons within a
group are mutually exclusive.

Radio buttons are typically grouped. Each group must have a label indicating the kind of choices offered
by the group, and each button must have a title indicating what it does.

Non-Auto-Toggling Variant

When the non-auto-toggling variant is being used, and when the user clicks a radio button in the off state,
your application should call SetControlValue to:

• Set that control to the on state and place a black dot in its circle (see Fig 1).

• Set the previously "on" button in the group to the off state and remove the black dot from its circle.

SetControlValue may also be used to place a dash in the circle to indicate that the control is in the mixed
state (see Fig 1). The mixed state is a special state that shows that a selected range has a variety of items
in the on state. For example, a set of radio buttons for selecting font size might have buttons representing
10- and 12-point sizes. If a passage of text with both 10- and 12-point text was selected, both the 10 and
12 buttons would appear in the mixed state.

Introduction to Controls Version 1.0 7-7

Auto-Toggling Variant

When the auto-toggling variant introduced with Mac OS 8.5 is being used, radio buttons automatically
change between their various states (on, off, and mixed) in response to user actions. Your application need
only call the function GetControl32BitValue to get the radio button's new state. There is no need to
programmatically change the control's value after tracking successfully.

Scroll Bars

Scroll bars scroll a document within a window. Scroll bars have scroll arrows at each end and a movable
scroll box (Mac OS 8/9) or scroller (Mac OS X). The part of a scroll bar not occupied by the scroll
arrows and scroll box/scroller is called the gray area (Mac OS 8/9) or track (Mac OS X). When the user
clicks in a scroll arrow or gray area/track, or drags the scroll box/scroller, your application must scroll the
document as appropriate.

As previously stated, the CDEF for scroll bars supports two variants. The only difference between the two
variants is that one supports live feedback and the other does not. In the case of scroll bars, live feedback
(a generic term) may be used to perform live scrolling of a document in a window. Live scrolling means
that, when the user attempts to drag the scroll box/scroller, the scroll box/scroller moves and the document
scrolls as the user moves the mouse. (Without live scrolling, only a ghosted image of the scroll
box/scroller moves. In addition, the document is only scrolled, and the scroll box/scroller proper is only
redrawn at its new location, when the user releases the mouse button.)

Scroll Arrows and Gray Area/Track

When the scroll arrows are clicked, your application should move the scroll box/scroller the appropriate
distance in the direction of the arrow being clicked and scroll the window contents accordingly. Each click
should move the window contents one unit in the specified direction. (In a text document, one unit would
typically be one line of text.)

When the gray area/track is clicked above the scroll box/scroller, your application should move the
document down so that the top unit of the previous view is at the bottom of the new view, and it should
move the scroll box/scroller accordingly. A similar, but upward movement, should occur when the user
clicks in the gray area/track below the scroll box/scroller.

Scroll Box/Scroller

Live Feedback Variant Not Used

When the live feedback variant is not being used, and when the user drags the scroll box/scroller, the
Control Manager redraws the scroll box/scroller proper in its new position, and sets the control's value
accordingly, when the user releases the mouse button. You must then ascertain the position (that is, the
value) of the scroll box/scroller and, using this value, display the appropriate portion of the document.

Live Feedback Variant Used

When the live feedback variant is being used, and when the user drags the scroll box/scroller, the Control
Manager continually redraws the scroll box/scroller, and continually returns the control's position (that is,
its value) as the scroll box/scroller moves. Once again, your application uses this value to display the
appropriate portion of the document.

Proportional Scroll Boxes/Scrollers

A proportional scroll box/scroller is one whose height (vertical scroll bars) or width (horizontal scroll bars)
varies in relation to the height/width of the scroll bar so as to visually represent the proportion of the
document visible in the window.

Those of your application's scroll boxes/scrollers created from 'CNTL' resources will appear as proportional
scroll boxes/scrollers provided that you pass the size of the view area, in whatever units the scroll bar uses,
to the function SetControlViewSize. The system automatically handles resizing the scroll box/scroller once
your application supplies this information. (On Mac OS 8/9, the user must also have selected Smart

7-8 Version 1.0 Introduction to Controls

Scrolling on in the Options tab in the Appearance control panel.) For scroll bars created programmatically
using the function CreateScrollBarControl, you pass the size of the view area in the viewSize parameter.

The following functions are relevant to proportional scroll boxes/scrollers:

Function Description
GetControlViewSize Obtains the size of the content to which a control's size is proportioned.
SetControlViewSize Informs the Control Manager of the size of the content to which a control's size is

proportioned.

Pop-Up Menu Buttons

Pop-up menu buttons provide an alternative method of providing the user with a list of choices. The items
in a pop-up menu button's menu should be mutually exclusive. Pop-up menus should be used to provide a
choice of attributes, and should not be used to provide additional commands.

Primary Group Boxes (Text Title Variant)

A primary group box (text title variant) is a control that consists of a rectangular frame which may or may
not contain a title. Group boxes are used to associate, isolate, and distinguish groups of related controls,
such as a group of radio buttons.

The primary group box is an embedder control (see below), meaning that you can embed other controls,
such as radio buttons, checkboxes, and pop-up menu buttons, within it.

User Panes

The user pane is unique amongst the family of controls in that it has no visual representation. It has two
main uses:

• Like the primary group box, it can be used as an embedder control, that is, other controls may be
embedded within it.

• It provides a way to hook in application-defined (callback) functions, known as user pane functions,
which perform actions such as drawing, hit testing, etc.

Activating, Deactivating, Hiding, Showing, Enabling, and Disabling Controls

Activating and Deactivating Controls

A control can be either active or inactive. A control should be made inactive when it is inappropriate for
your application to respond to a mouse-down event in that control. The Control Manager displays inactive
controls in a dimmed state. The Control Manager displays inactive basic controls and inactive primary
group boxes as shown at Figs 3 and 4.

PUSH BUTTONS

CHECKBOXES

RADIO BUTTONS

SCROLL BAR

POP-UP MENU

On state

Off state

Mixed state

On state

Off state

Mixed state

PRIMARY GROUP BOX
(TEXT TITLE VARIANT)

Left colour
icon variant

Right colour
icon variant

Basic variant
set as default
button

Basic variant

FIG 3 - THE BASIC CONTROLS AND THE PRIMARY GROUP BOX (TEXT TITLE VARIANT) IN INACTIVE MODE (MAC OS 8/9)

Introduction to Controls Version 1.0 7-9

FIG 4 - THE BASIC CONTROLS AND THE PRIMARY GROUP BOX (TEXT TITLE VARIANT) IN INACTIVE MODE (MAC OS X)

CHECKBOXES

PUSH BUTTONS

Basic variant
set as default
button

On state

Off state

Left colour
icon variant

Right colour
icon variant

Basic variant

SCROLL BAR

RADIO BUTTONS

POP-UP MENU

PRIMARY GROUP BOX
(TEXT TITLE VARIANT)

On state

Off state

Mixed state

Mixed state

Activating and Deactivating Controls Other Than Scroll Bars

You use ActivateControl and DeactivateControl to make push buttons, checkboxes, radio buttons, pop-up
menu buttons and primary group boxes active and inactive. You should make these controls inactive
when:

• They are not relevant to the current context. (But see also Enabling and Disabling Controls, below.)

• The window in which they reside is not the active window.

Your application can ascertain whether a control is currently active or inactive using IsControlActive.

Activating and Deactivating Scroll Bars

Scroll bars become irrelevant to the current context when the document being displayed is smaller than the
window in which it is being displayed. To make a scroll bar inactive in this case, you typically use
SetControlMaximum to make the scroll bar's maximum value (see below) equal to its minimum value (see
below), which causes the Control Manager to automatically make the scroll bar inactive and display it in
the inactive state. To make the scroll bar active again, SetControlMaximum should be used to set its
maximum value larger than its minimum value.

Hiding and Showing Controls

HideControl may be used to hide a control. HideControl erases a control by filling its enclosing rectangle
with the owning window's background pattern.

ShowControl may be used to show a control. ShowControl makes the control visible and immediately draws
the control within its window without using your window’s standard updating mechanism.

SetControlVisibility may be used to both hide and show a control. With regard to showing a control, this
function differs from ShowControl in that the option is available to "show" the control without redrawing it
immediately.

Your application can ascertain whether a control is currently hidden or visible using IsControlVisible.

Enabling and Disabling Controls

EnableControl and DisableControl may be used to enable and disable controls. IsControlEnabled may be
used to determine whether a control is enabled or disabled.

A distinction needs to be made between an disabled control and a deactivated control. A deactivated
control is simply a control in a deactivated window. (All controls in a window should be deactivated when
the window is deactivated.) A disabled control, on the other hand, is a control which the user should not
currently be able to manipulate. The activation state of the window is immaterial in this case.

A "delete" button, for example, should be disabled when nothing is currently selected. As another
example, controls in floating windows should never be deactivated, simply because floating windows

7-10 Version 1.0 Introduction to Controls

themselves should never be deactivated. However, a control in a floating window should be disabled if the
user should not currently be able to manipulate it.

It follows that a control in a deactivated window must be deactivated and may be either disabled or
enabled.

A problem here is that, as of the time of writing, EnableControl, DisableControl, and IsControlEnabled are
only available on Mac OS X. Thus, on Mac OS 8/9, the only way to deny user access to a control in an
active window is to deactivate it.

Visual Feedback From the Basic Controls
In response to a mouse-down event in a basic control, your application should call either TrackControl or
HandleControlClick. These functions provide visual feedback when a mouse-down occurs in an active
control by:

• Displaying push buttons, checkboxes and radio buttons in their pressed mode.

• Displaying and highlighting the items in pop-up menu buttons.

• Highlighting the scroll arrows in scroll bars.

• Moving the scroll box/scroller (live feedback variant of the scroll bar CDEF being used) or moving
a ghosted image of the scroll box/scroller (live feedback variant not being used) when the user drags
it.

HandleControlClick was introduced with Mac OS 8 and the Appearance Manager. It is identical to
TrackControl except that it allows modifier keys to be passed in its third parameter. Some of the newer
controls, such as edit text fields and list boxes, require the ability for modifier keys to be passed in. If you
use HandleControlClick with controls for which modifier keys are irrelevant, simply pass 0 in the
inModifiers parameter.

Embedding Controls
As previously stated, controls (or, more usually, a group of controls) may be embedded in embedder
controls.

The Root Control

The embedding of controls in a window requires that the window have a root control. The root control,
which is implemented as a user pane control, is the container for all other window controls and is at the
base of what is known as the embedding hierarchy.

On Mac OS X, a root control is created automatically in all document windows that have at least one other
control. On Mac OS 8/9, however, you must explicitly create the root control in document windows by
calling CreateRootControl. The root control may be retrieved by calling GetRootControl.

Once you have created a root control, new controls will be automatically embedded in the root control
when they are created. One advantage of such embedding is that, when you wish to activate and deactivate
all of the window's controls on window activation and deactivation, you can do so by simply activating and
deactivating the root control. (If the root control did not exist, you would have to activate and deactivate
all of the window's controls individually.) You can also hide and show all of the window's control by
simply hiding and showing the root control.

Other Embedders

Certain other controls also have embedding capability. One such embedder control is the primary group
box. This means that you can embed, say, a group of radio buttons in a primary group box (which would,
in turn, be already automatically embedded in the root control), an arrangement which is illustrated
conceptually at Fig 5. By acting on the group box alone, you can then activate, deactivate, hide, show, and
move all four controls as a group.

Introduction to Controls Version 1.0 7-11

EmbedControl may be used to embed a control in another (embedder) control. However, where the control
to be embedded is visually contained by the embedder, as is the case with the radio buttons in Fig 5,
AutoEmbedControl would be more appropriate.

FIG 5 - THE ROOT CONTROL AND EMBEDDED CONTROLS

ROOT CONTROL (IMPLEMENTED AS A USER PANE).
ALL OTHER CONTROLS IN THE WINDOW ARE
VISUALLY CONTAINED BY THE ROOT CONTROL
AND ARE AUTOMATICALLY EMBEDDED IN IT.

PRIMARY GROUP BOX AUTOMATICALLY
EMBEDDED IN ROOT CONTROL

RADIO BUTTONS VISUALLY CONTAINED BY THE
PRIMARY GROUP BOX AND EMBEDDED IN THE
GROUP BOX VIA A CALL TO AutoEmbedControl.

DOCUMENT WINDOW

Other Advantages of Embedding

Drawing Order

As controls are created by your application, they are added to the head of the window's control list. When
those controls are drawn in the absence of an embedding hierarchy, the Control Manager starts from the
top of the control list, drawing the controls in the opposite order to the order in which it they were created.

In the example at Fig 5, assume that there is no embedding hierarchy and that the radio buttons are created
after the group box. This means that the group box will be drawn after the radio buttons, thus obscuring
the radio buttons. An embedding hierarchy, however, enforces drawing order by drawing the embedding
control before its embedded controls regardless of which is created first.

Hit Testing

Hit-testing is the process of testing whether a control is under the cursor at the time of a mouse-down
event, and of identifying that control. For situations where controls are visually contained by other
controls, an embedding hierarchy enforces orderly hit-testing by forcing an “inside-out” hit test aimed at
determining the most deeply nested control that is hit by the mouse.

Latency

Latency pertains to the ability of the Control Manager to remember the activation and visibility status of an
embedded control when its embedder is cycled between activated and deactivated, or between visible and
hidden.

For example, assume that the radio button labelled White at Fig 5 has been separately deactivated by the
application. When the primary group box is deactivated, the two remaining radio buttons will also be
deactivated. When the primary group box is again activated, the Control Manager remembers that the
radio button labelled white was previously deactivated, and ensures that it remains in that mode.

7-12 Version 1.0 Introduction to Controls

Getting and Setting Control Data
Getting and setting control data is essentially a mechanism that allows the outside world to access a
control's specialised data without exposing how that data is stored. It allows you to easily set and get
control fonts, tell the push button CDEF to draw the default outline around a default push button, and many
other useful things.

Each piece of information that a particular CDEF allows access to is referenced by a tag, which is a
constant that is meaningful to the CDEF and which represents the data in question. Each tagged piece of
data can be of any data type, such as a menu reference or a structure.

Control data tag constants are passed in the third parameter of the getter and setter functions
SetControlData and GetControlData. The control data tag constants relevant to the basic controls are as
follows:

Control Data Tag Constant Meaning and Data Type Returned or Set
kControlPushButtonDefaultTag Causes a push button to be drawn with the appearance of the default push

button, or returns whether the push button is drawn with the default push
button appearance.
Data type returned or set: Boolean

kControlPushButtonCancelTag Gets or sets whether a push button plays the Cancel button theme sound
instead of the normal push button theme sound.
Data type returned or set: Boolean. Default is false.

kControlPopupButtonMenuRefTag Gets or sets the menu reference for a pop-up menu.
Data type returned or set: MenuRef

kControlPopupButtonMenuIDTag Gets or sets the menu ID for a pop-up menu button.
Data type returned or set: SInt16

kControlPopupButtonExtraHeightTag Gets or sets the amount of extra white space in a pop-up menu button.
Data type returned or set: SInt16. Default is 0.

kControlGroupBoxTitleRectTag Get the rectangle that contains the title of a group box (and any associated
control, such as a checkbox).
Data type returned or set: Rect

kControlScrollBarShowsArrowsTag Mac OS X only. Specifies whether the scroll arrows are to be drawn or not.
Data type set: Boolean

The Control Object
The Control Manager stores information about individual controls in opaque data structures called control
objects. The data type ControlRef is defined as a pointer to a control object:

typedef struct OpaqueControlRef* ControlRef;

Accessor Functions

Accessor functions are provided to access the information in control objects. The accessor functions are as
follows:

Function Description
GetControlOwner
SetControlOwner

Gets a reference to the window in which the specified control is located.
Assigns the specified control to a specified window.

GetControlBounds
SetControlBounds

Sets the specified control's enclosing rectangle.
Gets the specified control's enclosing rectangle.

IsControlVisible
SetControlVisibility

Determines if the specified control is currently hidden or showing.
Shows or hides the specified control.

IsControlHilited
HiliteControl
GetControlHilite

Determines if the specified control is currently highlighted.
Changes active/inactive status of a control or highlights a specified part of a control.
Determines whether the specified control is currently highlighted.

GetControlValue
SetControlValue

Gets the specified control's value (16 bit) as set by SetControlValue.
Sets the specified control's value (16 bit).

Introduction to Controls Version 1.0 7-13

GetControl32BitValue
SetControl32BitValue

Sets the specified control's value as set by SetControl32BitValue.
Gets the specified control's value.

GetControlMaximum
SetControlMaximum

Gets the specified control's maximum value (16 bit) as set by SetControlMaximum.
Sets the specified control's maximum value (16 bit).

GetControl32BitMaximum
SetControl32BitMaximum

Gets the specified control's maximum value as set by SetControl32BitMaximum.
Sets the specified control's maximum value.

GetControlMinimum
SetControlMinimum

Gets the specified control's minimum value (16 bit) as set by SetControlMinimum.
Sets the specified control's minimum value (16 bit).

GetControl32BitMinimum
SetControl32BitMinimum

Gets the specified control's minimum value as set by SetControl32BitMinimum.
Sets the specified control's minimum value.

GetControlDataHandle
SetControlDataHandle

Gets a handle to data specific to a particular control type.
Sets a handle to data specific to a particular control type.

GetControlAction
SetControlAction

Gets the universal procedure pointer to the specified control's action function.
Sets a universal procedure pointer to the specified control's action function.

GetControlReference
SetControlReference

Gets the specified control's reference constant.
Sets the specified control's reference constant.

GetControlTitle
SetControlTitle

Gets the specified control's title.
Set the specified control's title.

GetControlDefinition Gets the specified control's definition function.
GetControlPopupMenuHandle
SetControlPopupMenuHandle

Gets the specified popup menu button control's menu reference.
Sets the menu reference for a popup menu button control.

GetControlPopupMenuID
SetControlPopupMenuID

Gets the specified pop-up menu button control's menu ID.
Sets the menu ID for a pop-up menu button control.

Creating Controls
When you use the Dialog Manager to implement push buttons, radio buttons, checkboxes or pop-up menu
buttons in alerts or dialogs, Dialog Manager functions automatically use Control Manager functions to
create the controls for you.

For document and utility windows, you can create controls from 'CNTL' resources or you can create them
programmatically.

Creating Controls From 'CNTL' Resources

You create controls from 'CNTL' resources using GetNewControl. GetNewControl, which takes a 'CNTL'
resource ID and a reference to the window object, creates a control object from the information in the
resource, adds the control object to the control list for your window, and returns a reference to the control.

Before you can create a control using GetNewControl, you must, of course, first create the necessary 'CNTL'
resource. When creating resources with Resorcerer, it is advisable that you refer to a diagram and
description of the structure of the resource and relate that to the various items in the Resorcerer editing
windows. Accordingly, the following describes the structure of the 'CNTL' resource.

Structure of a Compiled 'CNTL' Resource

Fig 6 shows the structure of a compiled 'CNTL' resource and how it "feeds" the control object.

7-14 Version 1.0 Introduction to Controls

FIG 6 - STRUCTURE OF A COMPILED CONTROL ('CNTL') RESOURCE

8

2

2

4

1

Variable

BYTES

1

2

2

INITIAL RECTANGLE

INITIAL VALUE

VISIBILITY
FILL

MAXIMUM VALUE

MINIMUM VALUE

REFERENCE VALUE

CONTROL DEFINITION ID

TITLE

Control Object
Control's rectangle
Visibility
Value
Minimum value
Maximum value
Handle to control definition function
Reference constant
Title

The following describes the main fields of the 'CNTL' resource:

Field Description
INITIAL RECTANGLE A rectangle that determines the control's size and location. It is specified in local coordinates.
INITIAL VALUE Initial value for the control. (See Values for Controls, below).
VISIBILITY Visibility of the control. When this field contains the value true, GetNewControl draws the control

immediately. When this field contains false, the application must use ShowControl when the time has
come to display the control.

MAXIMUM VALUE Maximum value of the control. (See Values for Controls, below).
MINIMUM VALUE Minimum value for the control. (See Values for Controls, below).
CONTROL DEFINITION ID The control definition ID. (See The Control Definition Function, above).
REFERENCE VALUE The control's reference value, which is set up and used only by the application (except when the

control is the add resource variant of the pop-up menu button, in which case this field is used to
specify the resource type).

TITLE For controls that need a title, the string for that title. For controls that do not need or do not use titles,
an empty string.

Values For Controls

The following lists the initial, minimum, and maximum value settings for the basic controls and the
primary group box:

Control Initial Value Minimum Value Maximum Value
Push button 0 0 1
Checkbox 0 (initially off), or

1 (initially on), or
2 (initially in mixed state).

0 1, or 2 if mixed state checkboxes are to be
used.

Radio button 0 (initially off), or
1 (initially on), or
2 (initially in mixed state).

0 1, or 2 if mixed state radio buttons are to be
used.

Scroll bar Whatever initial value is
appropriate (between the
minimum and maximum
settings).

Whatever minimum value
is appropriate. The value
must be between –32768
and 32767.

Whatever maximum value is appropriate.
The value must be between –32768 and
32767.
When the maximum setting is equal to the
minimum setting, the CDEF makes the scroll
bar inactive. When the maximum setting is
greater than the minimum setting, the CDEF
makes the scroll bar active.

Introduction to Controls Version 1.0 7-15

Pop-up menu
button

A combination of values
which instructs the Control
Manager how to draw the
control's title. (See Pop-up
Menu Button Title Style
Constants, below.)

Resource ID of the 'MENU'

resource.
Width (in pixels) of the title. (See Pop-up
Menu Button Title Width, below.)

Primary group
box

Ignored if the group box is
the text title variant.

Ignored if the group box is
the text title variant.

Ignored if the group box is the text title
variant.

Note that the title of each of the three value fields is somewhat of a misnomer in the case of the pop-up
menu button. These fields are thus said to be "overloaded".

Creating 'CNTL' Resources Using Resorcerer

Fig 7 shows a 'CNTL' resource being created with Resorcerer.

FIG 7 - CREATING A 'CNTL' RESOURCE USING RESORCERER

When pop-up menu button resources are being
edited:
• This title changes to StyleCode.
• This title changes to 'MENU' ID.
• This title changes to Title Width.

INITIAL RECTANGLE

INITIAL VALUE

VISIBILITY
FILL

MAXIMUM VALUE

MINIMUM VALUE

REFERENCE VALUE

CONTROL DEFINITION ID

TITLE

STRUCTURE OF A COMPILED 'CNTL' RESOURCE

RESORCERER 'CNTL' RESOURCE EDITING WINDOW

In addition, if the pop-up
menu button resource
being edited is the add-
resource variant, this title
changes to ResType
and the resource type
(eg., FONT) is entered
here.

If the pop-up menu button being edited is
the use-window-font variant , this
checkbox is checkmarked automatically.

7-16 Version 1.0 Introduction to Controls

Creating Controls Programmatically

You can also create controls programmatically. The following functions, which were introduced with
Carbon, may be used to programmatically create the controls described in this chapter:

Function Parameters
CreatePushButtonControl Rectangle, title.
CreatePushButtonWithIconControl Rectangle, title, address of ControlButtonContentInfo structure, icon alignment.
CreateRadioButtonControl Rectangle, title, auto-toggle/non-auto-toggle.
CreateCheckBoxControl Rectangle, title, autotoggle/non-autotoggle.
CreateScrollBarControl Rectangle, control value, minimum value,maximum value, size of view area,

live-feedback/non-live-feedback, UPP to control action function.
CreatePopupButtonControl Rectangle, title, menu ID,variable-width/non-variable-width, title width,title

justification, title style.
CreateGroupBoxControl Rectangle, title, primary/secondary.
CreateUserPaneControl Rectangle, features.

Push Button Content and Icon Alignment

One of the parameters in calls to CreatePushButtonWithIconControl is the address of a structure of type
ControlButtonContentInfo:

struct ControlButtonContentInfo
{
 ControlContentType contentType;
 union
 {
 SInt16 resID;
 CIconHandle cIconHandle;
 Handle iconSuite;
 IconRef iconRef;
 PicHandle picture;
 Handle ICONHandle;
 } u;
};
typedef struct ControlButtonContentInfo ControlButtonContentInfo;

If, for example, you wish to specify a colour icon for the button's icon content, you would assign
kControlContentCIconRes to the contentType field and the icon's resource ID to the resID field.

Another parameter in calls to CreatePushButtonWithIconControl is a value of type
ControlPushButtonIconAlignment. Relevant constants are:

kControlPushButtonIconOnLeft
kControlPushButtonIconOnRight

Additional Considerations — Scroll Bars

When creating scroll bars, you typically call GetNewControl or CreateScrollBarControl immediately after
you create the window and then use MoveControl, SizeControl, SetControlMaximum and SetControlValue to
adjust the size, location and value settings. (For example, for a window displaying a text document, you
would typically calculate the number of lines of text and set the vertical scroll bar's maximum value
according to the line count and the window's current height. You would set the control's value according to
the part of the document to be initially displayed.)

Most applications allow the user to change the size of windows, add information to the document and
remove information from the document. It is therefore necessary, in your window handling code, to
calculate a changing maximum setting based on the document's current size and its window's current size.
For new documents which have no content to scroll, assign an initial value of 0 as the maximum setting
(which will, as previously stated, make the scroll bars inactive). Thereafter, your window-handling code
should set and maintain the maximum setting.

Introduction to Controls Version 1.0 7-17

A scroll bar for a document window is, by convention, 16 pixels wide (vertical scroll bars) and 16 pixels
high (horizontal scroll bars). The Control Manager draws one-pixel lines around the scroll bar, based on
the rectangle enclosing the scroll bar. As shown at Fig 8, these outside lines should overlap the inside lines
of the window frame.

FIG 8 - CORRECT OVERLAP OF SCROLL BAR ON WINDOW FRAME

1 PIXEL OVERLAP

16
PIXELS

16
PIXELS

The following calculations1 determine the rectangle for a vertical scroll bar for a document window:

Coordinate Calculation
Top Combined height of any items above the scroll bar - 1.
Left Width of window - 15.
Bottom Height of window - 14.
Right Width of window + 1.

The following calculations determine the rectangle for a horizontal scroll bar for a document window.

Coordinate Calculation
Top Height of window - 15.
Left Combined width of any items to the left of the scroll bar - 1.
Bottom Height of window + 1.
Right Width of window - 14.

When the user resizes the window, the initial maximum settings and location, as specified in the 'CNTL'
resource or CreateScrollBarControl call, must therefore be changed dynamically by the application as
required. Typically, this is achieved by storing handles to each scroll bar in a document structure
associated with the window and then using Control Manager functions to change control settings.

Additional Considerations – Pop-up Menu Buttons

Pop-up Menu Button Title Style Constants

The constants and values for the initial value for pop-up menu buttons are as follows:

Constant Value Meaning
popupTitleBold 0x0100 Boldface font style
popupTitleItalic 0x0200 Italic font style
popupTitleUnderline 0x0400 Underline font style
popupTitleOutline 0x0800 Outline font style
popupTitleShadow 0x1000 Shadow font style
popupTitleCondense 0x2000 Condensed text
popupTitleExtend 0x4000 Extended text

1 Do not include the title bar area in these calculations.

7-18 Version 1.0 Introduction to Controls

Pop-up Menu Button Title Width

Fig 9 shows the relationship between the title width and the enclosing rectangle of a pop-up menu box.

FIG 9 - POP-UP MENU BUTTON TITLE WIDTH AND CONTROL RECTANGLE WIDTH

FIXED-WIDTH VARIANT

VARIABLE-WIDTH VARIANT

CONTROL RECTANGLE WIDTH

TITLE WIDTH

Menu Width Adjustment

If the base variant or the variable width variant is being used, and whenever the pop-up menu button is
redrawn, the CDEF calls CalcMenuSize to calculate the size of the menu associated with the control. If the
sum of the width of the title, the longest item in the menu, the arrows, and a small amount of "white space"
is less than the width of the control rectangle, the width of the pop-up button will be reduced for drawing
purposes (see Fig 9). If the calculated width is greater than the width of the control rectangle, the longer
menu items will be truncated with an added ellipsis so that the drawn pop-up will not exceed the width of
the control rectangle.

Menu Items and Control Values

When the control is created, the first menu item and the number of items in the pop-up menu button are
stored in the control object. When the user chooses a different menu item, the Control Manager changes
the item number value stored in the control object to that item number.

Adding Resource Names as Items

If the add resource variant of the pop-up menu button is being used, the control reference constant value in
the control object is coerced to type ResType and AppendResMenu is called to add items of that type. For
example, if you specify FONT in the ResType item in the Resorcerer 'CNTL' resource editing window, the
CDEF appends a list of fonts installed in the system to the menu specified at the 'MENU' ID item. In this
situation, you can still store a reference constant in the control object by calling SetControlReference after
the control has been created.

Setting the Font of a Control's Title

You can set the font of any control's title independently of the system font or window font. To set the font
of a control's title, you pass a pointer to a control font style structure in the inStyle parameter of the
function SetControlFontStyle.

Control Font Style Structure

struct ControlFontStyleRec
{
 SInt16 flags;
 SInt16 font;
 SInt16 size;
 SInt16 style;
 SInt16 mode;
 SInt16 just;
 RGBColor foreColor;
 RGBColor backColor;
};
typedef struct ControlFontStyleRec ControlFontStyleRec;
typedef ControlFontStyleRec *ControlFontStylePtr;

Introduction to Controls Version 1.0 7-19

Field Descriptions

flags Specifies which fields of the structure should be applied to the control (see Control Font Style
Flag Constants, below). If no flags are set, the control uses the system font (or, for control
variants which use the window font, the window font).

font Specifies the ID of the font family to use. Alternatively, a meta font constant may be
assigned to this field (see Meta Font Constants, below).

size If the kControlUseSizeMask is set in the flags field, specifies the point size of the text. If the
kControlAddFontSizeMask bit is set in the flags field, specifies the size to add to the current
point size of the text. Alternatively, a meta font constant may be assigned to this field (see
Meta Font Constants, below).

style Specifies the style to apply to the text. The bit numbers and the styles they represent are as
follows:

Bit Number Style
0 Bold
1 Italic
2 Underline
3 Outline
4 Shadow
5 Condensed
6 Extended

If all bits are clear, the plain font style is specified.

mode Specifies how characters are drawn in the bit image. (For a discussion of transfer modes, see
Chapter 12.)

just Specifies text justification. The relevant constants are as follows:

Constant Value
teFlushDefault 0
teCenter 1
teFlushRight 2
teFlushLeft 3

foreColor Specifies the RGB (red-green-blue) colour to use when drawing the text.

backColor Specifies the RGB colour to use when drawing the background behind the text. (Note that, in
certain text modes, background colour is ignored.)

Control Font Style Flag Constants

You can pass one or more of the following control font style flag constants in the flags field of the control
font style structure to specify those fields of the structure that are be applied to the control. If none of the
flags in of the flags field are set, the control uses the system font unless a control with a variant that uses
the window font has been specified.

Constant Value Meaning
kControlUseFontMask 0x0001 The font field of the control font style structure is applied to the control.
kControlUseFaceMask 0x0002 The style field of the control font style structure is applied to the

control.
Ignored if you specify a meta font value (see Meta Font Constants,
below).

kControlUseSizeMask 0x0004 The size field of the control font style structure is applied to the control.
Ignored if you specify a meta font value (see Meta Font Constants,
below).

7-20 Version 1.0 Introduction to Controls

kControlUseForeColorMask 0x0008 The foreColor field of the control font style structure is applied to the
control.
Applies only to static text controls.

kControlUseBackColorMask 0x0010 The backColor field of the control font style structure is applied to the
control.
Applies only to static text controls.

kControlUseModeMask 0x0020 The text mode specified in the mode field of the control font style
structure is applied to the control.

kControlUseJustMask 0x0040 The just field of the control font style structure is applied to the control.
kControlUseAllMask 0x00FF All flags in this mask will be set except kControlUseAddFontSizeMask.
kControlUseAddFontSizeMask 0x0100 The Dialog Manager will add a specified font size to the size field of the

control font style structure.
Ignored if you specify a meta font value (see Meta Font Constants,
below.

Meta Font Constants

You can use the following meta font constants in the font field of the control font style structure to specify
the style, size, and font family of a control's font. You should use these meta font constants whenever
possible because the system font can change, depending upon the current theme. If none of these constants
are specified, the control uses the system font unless a control with a variant that uses the window font has
been specified.

Constant Value Meaning In Roman Script System
kControlFontBigSystemFont -1 Use the system font.
kControlFontSmallSystemFont -2 Use the small system font.
kControlFontSmallBoldSystemFont -3 Use the small emphasised system font.
kControlFontViewSystemFont -4 Use the views font.

Another advantage of using these meta font constants is that you can be sure of getting the correct font on a
Macintosh using a different script system, such as kanji.

Setting and Getting Control IDs

The following functions, which were introduced with Carbon, may be used to set and get a control’s ID,
and to get a reference to a control using the control’s ID:

Function Description
SetControlID Set a control’s ID.
GetControlID Get a control’s ID.
GetControlByID Get a reference to a control using the control’s ID.

Updating, Moving, and Removing Controls

Updating Controls

When your application receives an update event for a window containing controls, it should call
UpdateControls between the BeginUpdate and EndUpdate calls in its updating function.

Note that when you use the Dialog Manager to implement push buttons, radio buttons, checkboxes or pop-
up menu buttons in alerts or dialogs, Dialog Manager functions automatically use Control Manager
functions to update the controls for you.

Moving Controls

You can change the position of a control using MoveControl, which erases the control, offsets the control's
control rectangle, and redraws it at the specified new location

Introduction to Controls Version 1.0 7-21

Removing Controls

DisposeControl may be used to remove a control from a window, delete it from the window's control list,
and release the control object and associated data structures from memory. KillControls will dispose of all
of a window's controls at once.

Handling Mouse Events in Controls

Overview

For mouse events in controls, you usually perform the following tasks:

• Use FindWindow to determine the window in which the mouse-down event occurred.

• If the mouse-down event occurred in the content region of the active window, use FindControl to
determine whether the event occurred in a control and, if so, which control.

• Call TrackControl or HandleControlClick to handle user interaction with the control as long as the user
holds the mouse button down. The actionProc parameter passed to TrackControl, or the inAction
parameter passed to HandleControlClick, should be as follows:

• NULL for push buttons, checkboxes and radio buttons.

• For scroll arrows and gray areas/tracks of scroll bars, a universal procedure pointer which
invokes an application-defined action function which, in turn, causes the document to scroll as
long as the user holds the mouse button down.

• For the scroll box/scroller of scroll bars:

• NULL if the non-live-feedback variant is being used.

• If the live-feedback variant is being used, a pointer which invokes an application-defined
action function which, in turn, causes the document to scroll while the scroll box/scroller is
being dragged.

• (ControlActionUPP) -1 for pop-up menu buttons. This causes TrackControl and
HandleControlClick to use the action function defined within the pop-up CDEF, a pointer to
which is stored in the control object.

Note that, as an alternative to passing universal procedure pointers in the actionProc parameter of
TrackControl, or the inAction parameter of HandleControlClick, you can preset the action function by
passing the universal procedure pointer in the actionProc parameter of SetControlAction.
(Ordinarily, you would call SetControlAction immediately after the control is created.) In this case,
you must pass (ControlActionUPP) -1 in the actionProc and inAction parameters of TrackControl and
HandleControlClick.

• When TrackControl or HandleControlClick reports that the user has released the mouse button with
the cursor in a control, respond appropriately, that is:

• Perform the task identified by the push button title if the cursor is over a push button.

• Toggle the value of the checkbox when the cursor is over a checkbox. (The Control Manager
then redraws or removes the checkmark, as appropriate.)

• Turn on the radio button, and turn off all other radio buttons in the group, when the cursor is
over an active radio button.

• Show more of the document in the direction of the scroll arrow when the cursor is over the
scroll arrow or gray area/track of a scroll bar, and move the scroll box/scroller accordingly.

• If the non-live-feedback scroll bar variant is being used, and when the cursor is over the scroll
box/scroller, determine where the user has dragged the scroll box/scroller, and then display the
corresponding portion of the document.

7-22 Version 1.0 Introduction to Controls

• Use the new setting chosen by the user when the cursor is over a pop-up menu button.

Determining a Mouse-Down Event in a Control

FindControl will return both a reference to the control as well as a control part code when a mouse-down
event occurs in a visible, active control. FindControl will set the control reference to NULL and return 0 as
the control part code when a mouse-down occurs in an invisible or inactive control, or when the cursor is
not in a control.

A control part code is an integer from 1 to 255. Part codes are assigned to a control by its CDEF. The
CDEFs for the basic controls define the following part codes:

Constant Value Meaning
kControlNoPart 0 Event did not occur in any control.

Also unhighlights any highlighted part of the control when passed to the
HiliteControl function.

kControlLabelPart 1 Event occurred in the label of a pop-up menu button.
kControlMenuPart 2 Event occurred in the menu of a pop-up menu button.
kControlButtonPart 10 Event occurred in a push button.
kControlCheckBoxPart 11 Event occurred in a checkbox.
kControlRadioButtonPart 12 Event occurred in a radio button.
kControlUpButtonPart 20 Event occurred in the up (or left)scroll arrow of a scroll bar.
kControlDownButtonPart 21 Event occurred in the down (or right) button of a scroll bar.
kControlPageUpPart 22 Event occurred in the page-up part of a scroll bar.
kControlPageDownPart 23 Event occurred in the page-down part of a scroll bar.
kControlIndicatorPart 129 Event occurred in the scroll box/scroller of a scroll bar.

A newer function (FindControlUnderMouse) will return a reference to the control even if no part was hit and
can determine whether a mouse-down event has occurred even if the control is deactivated, whereas
FindControl will not.

Tracking the Cursor in a Control

When the call to FindControl determines that the cursor was in a control when the user pressed the mouse
button, you should call TrackControl or HandleControlClick to follow and respond to the user's movements.

You can use an action function to perform additional actions while the user holds the mouse button down.
Typically, action functions are used to continuously scroll the window's contents while the cursor is on a
scroll arrow or gray area/track of a scroll bar, or in the scroll box/scroller of a live-feedback scroll bar. (As
previously stated, you pass a pointer to this action function in the actionProc parameter of TrackControl or
the inAction parameter of HandleControlClick).

TrackControl and HandleControlClick return the control's control part code if the user releases the mouse
button while the cursor is still inside the control part, or kControlNoPart (0) if the cursor is outside the
control part when the button is released. Your application should then respond appropriately.

Determining and Changing Control Settings, and Getting a Control's Kind

Determining and Changing Control Settings

Your application often needs to determine the current setting and other values of a control when the user
clicks the control. When the user clicks a non-auto-toggling checkbox, for example, your application must
determine whether the box is currently checked before deciding whether to clear or draw the checkmark.

Your application can use the control value accessor functions described at The Control Object, above, to
get and set a control's value, minimum value, and maximum value.

Introduction to Controls Version 1.0 7-23

Getting a Control's Kind

You can determine a control's kind using GetControlKind. The control's kind is returned in a structure of
type ControlKind:

struct ControlKind
{
 OSType signature; // kControlKindSignatureApple ('appl') for all system controls
 OSType kind;
};
typedef struct ControlKind ControlKind;

For the controls addressed in this chapter, the following constants pertain to the kind field:

Constant Value Control Kind
kControlKindPushButton 'push' Push button.
kControlKindPushIconButton 'picn' Push button (colour icon variant).
kControlKindCheckBox 'cbox' Checkbox.
kControlKindRadioButton 'rdio' Radio button.
kControlKindScrollBar 'sbar' Scroll bar.
kControlKindPopupButton 'popb' Pop-up menu button.
kControlKindGroupBox 'grpb' Primary group box (text title variant).
kControlKindUserPane 'upan' User pane.

An alternative method is to call GetControlData with kControlKindTag passed in the inTagName parameter and
the address of a variable of type ControlKind passed in the inBuffer parameter.

A problem here is that, as of the time of writing, both GetControlKind and the alternative method were only
available on Mac OS X.

Moving and Resizing Scroll Bars
When the user resizes your windows, your application must resize and move that window's scroll bars.
The steps involved are:

• Resize the window.

• Make each scroll bar invisible using HideControl.

• Move the scroll bars to the appropriate edges of the window using MoveControl.

• Lengthen or shorten each scroll bar (as appropriate) using SizeControl.

• After recalculating the maximum settings, update the settings and redraw the scroll boxes/scrollers
using SetControlMaximum and SetControlValue.

• Make each scroll bar visible at its new location using ShowControl.

Each of the functions involved require a reference to the relevant scroll bar control. When your application
creates a window, it should store references for each scroll bar in a document structure associated with that
window.

Scrolling Operations With Scroll Bars

Scrolling Basics

Relationship Between Document, Window, and Scroll Bar

The relationship between a document and a window, and their representation in a scroll bar, is shown at
Fig 10.

7-24 Version 1.0 Introduction to Controls

FIG 10 - RELATIONSHIP BETWEEN THE DOCUMENT, THE WINDOW, AND THE SCROLL BAR

0
30

30

45 90

105

90

SCROLL BAR VALUES

MAXIMUM SCROLLING VALUE

END OF DOCUMENT

START OF DOCUMENT 0

Distance and Direction to Scroll

When the user scrolls a document using scroll bars, your application must first determine the distance and
direction to scroll. The distance to scroll is as follows:

• When the user drags the scroll box/scroller to a new location, your application should scroll the
document a corresponding distance.

• For a click on a scroll arrow, you should scroll by a distance appropriate to your application. For
example, a text editing application might scroll one line of text for one click in the vertical scroll
bar.

• For a click in the gray area/track, you should scroll by a distance appropriate to your application.
For example, a text editing application should ordinarily scroll by a distance equal to the height of
the window less one text line.

Direction to scroll is determined by whether the scrolling distance is expressed as a positive or negative
number. The scrolling distance will be expressed as a negative number if the user scrolls down from the
beginning of the document, and as a positive number if the user scrolls up towards the beginning of the
document.

Scrolling the Pixels

With the distance and direction to scroll determined, the next step is to scroll the pixels displayed in the
window by that distance and in that direction. Typically, ScrollRect is used for that purpose.

Moving the Scroll Box/Scroller

If the user did not effect the scroll using the scroll box/scroller, the scroll box/scroller must then be
repositioned using SetControlValue.

Introduction to Controls Version 1.0 7-25

Updating the Window

The final step is to either call a function which generates an update event or directly call your application's
update function. Your application's update function should call UpdateControls (to update the scroll bars)
and redraw the appropriate part of the document in the window.

Scrolling Example

Half the complexity of scrolling lays in ensuring that that part of the document which is displayed in the
window correlates with the scroll bar control value, and vice versa, at all times.

Consider the left-top of Fig 11. This newly opened document consists of 35 lines of text with a consistent
line height of 10 pixels. The document is, therefore, 350 pixels long. The upper-left point of the document
is identical to the window origin, that is, both are at (0,0).

FIG 11 - SCROLLING A DOCUMENT IN A WINDOW

1. WHEN THE USER FIRST OPENS THE DOCUMENT 2. AFTER APPLICATION SCROLLS DOCUMENT
VERTICALLY BY -100 PIXELS

4. AFTER APPLICATION UPDATES WINDOW'S
CONTENTS

3. AFTER APPLICATION RESTORES DOCUMENT'S
ORIGINAL COORDINATES

UPDATE REGION

(100,0)

(350,0)

(0,0)

(250,0)

(0,0)

(150,0)

(350,0)

(-100,0)

(0,0)

(150,0)

(250,0)

UPDATE REGION

(-100,0)

(0,0)

(150,0)

(250,0)

The window height is 150 pixels (15 lines of text). Thus the maximum setting for the scroll bar is
equivalent to 200 pixels down in the document. (As shown at Fig 10, a vertical scroll bar's maximum
setting equates to the length of the document minus the height of the window.)

Now assume that the user drags the scroll box/scroller down the vertical scroll bar. This means that your
application must move the text up by the appropriate amount. Moving a document up means a negative
scrolling value.

Suppose the application, using GetControlValue, determines that the scroll bar's control value is 100. The
application must then call ScrollRect to shift the bits displayed in the window by a distance of -100 pixels
(that is, 10 lines of text). As shown at the top-right of Fig 11, five lines from the bottom of the previous
window display now appear at the top of the window.

Note that, in all this, ScrollRect does not change the coordinate system of the window; it simply moves the
bits in the window to new coordinates that are still in the window's local coordinate system. In terms of the
window's local coordinate system, then, the upper left corner of the document is now at (-100,0).

To facilitate updating of the window (see the update region at Fig 11), SetOrigin must now be used to
change the local coordinate system of the window so that the application can treat the upper left corner of
the document as again lying at (0,0). This restoration of the document's original coordinate space makes it

7-26 Version 1.0 Introduction to Controls

easier for the application to determine which lines of the document to draw in the update region of the
window. (See bottom-left of Fig 11.)

The application now updates the window by drawing lines 16 to 24, which it stores in its document
structure as beginning at (160,0) and ending at (250,0).

Finally, because the Window and Control Managers always assume that the window's upper-left point is at
(0,0) when they draw in the window, the window origin cannot be left at (100,0). Accordingly, the
application must use SetOrigin to reset it to (0,0) after performing its own drawing, (See bottom-right of
Fig 11.)

To summarise:

• The user dragged the scroll box/scroller about half way down the vertical scroll bar. The application
determined that this distance and direction to scroll was -100 pixels.

• The application passed this distance to ScrollRect, which shifted the bits in the window 100 pixels
upwards and created an update region in the vacated area of the window.

• The application passed the vertical scroll bar's current setting (100) in a parameter to SetOrigin so
that the document's local coordinates were used when the update region of the window was redrawn.
This changed the window's origin to (100,0).

• The application drew the text in the update region.

• The application reset the window's origin to (0,0).

Alternative to SetOrigin

There are alternatives to the SetOrigin methodology. SetOrigin simply helps you to offset the window's
origin by the scroll bar's current settings when you update the window so that you can locate objects in a
document using a coordinate system where the upper-left corner of the document is always at (0,0).

As an alternative to this approach, your application can leave the upper-left corner of the window at (0,0)
and instead offset the items in your document, using OffsetRect, by an amount equal to the scroll bar's
settings.

Scrolling a TextEdit Document and Scrolling Using the List Manager

TextEdit is a collection of functions and data structures which you can use to provide your application with
basic text editing capabilities. Chapter 21 addresses, amongst other things, the scrolling of TextEdit
documents.

For scrolling lists of graphic or textual information, your application can use the List Manager to
implement scroll bars. (See Chapter 22.)

Small Versions of Controls
Human Interface Guidelines permit the use of small versions of certain controls, which should only be used
when space is at a premium. Full size and small controls should not be mixed in the same window.

The following lists those controls described in this chapter that are available in small versions, and
describes how to create them.

Control Mac OS X Mac OS 8/9
Push button Make the control's rectangle 17 pixels high and

call SetControlFontStyle to set the small system
font.

Make the control's rectangle 17 pixels high and
use SetControlFontStyle to set the small system
font.

Radio button
Checkbox

Call SetControlData with the kControlSizeTag tag
to make the control proper small, and call
SetControlFontStyle to set the title to the small
system font.

(Not available .)

Introduction to Controls Version 1.0 7-27

Pop-up menu button Create the control from a 'CNTL' resource,
specifying the kControlPopupUseWFontVariant,
and set the owner window's font to the small
system font.

Create the control from a 'CNTL' resource,
specifying the kControlPopupUseWFontVariant,
and set the owner window's font to the small
system font.

Scroll bar Call SetControlData with the kControlSizeTag tag
to make the control small.

Make the control's rectangle 11 pixels wide
(vertical scroll bars) or high (horizontal scroll
bars.

Small scroll bars should only be used in utility (floating) windows). Fig 12 shows an example.

FIG 12 - SMALL SCROLL BARS IN A UTILITY (FLOATING) WINDOW

7-28 Version 1.0 Introduction to Controls

Main Control Manager Constants, Data Types and Functions Relevant to the
Basic Controls, Primary Group Box & User Panes

Constants

Control Definition IDs
kControlPushButtonProc = 368
kControlPushButLeftIconProc = 374
kControlPushButRightIconProc = 375
kControlCheckBoxProc = 369
kControlCheckBoxAutoToggleProc = 371
kControlRadioButtonProc = 370
kControlRadioButtonAutoToggleProc = 372
kControlScrollBarProc = 384
kControlScrollBarLiveProc = 386
kControlPopupButtonProc = 400
kControlGroupBoxTextTitleProc = 160
kControlUserPaneProc = 256

Push Button Icon Alignment
kControlPushButtonIconOnLeft = 6
kControlPushButtonIconOnRight = 7

Pop-up Menu Button Variants
kControlPopupFixedWidthVariant = 1 << 0
kControlPopupVariableWidthVariant = 1 << 1
kControlPopupUseAddResMenuVariant = 1 << 2
kControlPopupUseWFontVariant = 1 << 3

Pop-up Title Characteristics
popupTitleBold = 1 << 8
popupTitleItalic = 1 << 9
popupTitleUnderline = 1 << 10
popupTitleOutline = 1 << 11
popupTitleShadow = 1 << 12
popupTitleCondense = 1 << 13
popupTitleExtend = 1 << 14
popupTitleNoStyle = 1 << 15

Control Variants
kControlNoVariant = 0
kControlUsesOwningWindowsFontVariant = 1 << 3

Control Part Codes
kControlNoPart = 0
kControlEntireControl = 0
kControlLabelPart = 1
kControlMenuPart = 2
kControlCheckBoxPart = 11
kControlRadioButtonPart = 11
kControlUpButtonPart = 20
kControlDownButtonPart = 21
kControlPageUpPart = 22
kControlPageDownPart = 23
kControlIndicatorPart = 129
kControlDisabledPart = 254
kControlInactivePart = 255

Checkbox Value Constants
kControlCheckBoxUncheckedValue = 0
kControlCheckBoxCheckedValue = 1
kControlCheckBoxMixedValue = 2

Introduction to Controls Version 1.0 7-29

Radio Button Value Constants
kControlRadioButtonUncheckedValue = 0
kControlRadioButtonCheckedValue = 1
kControlRadioButtonMixedValue = 2

Control Data Tag Constants
kControlPushButtonDefaultTag = FOUR_CHAR_CODE('dflt')
kControlPushButtonCancelTag = FOUR_CHAR_CODE('cncl')
kControlPopupButtonMenuRefTag = FOUR_CHAR_CODE('mhan')
kControlPopupButtonMenuIDTag = FOUR_CHAR_CODE('mnid')
kControlPopupButtonExtraHeightTag = FOUR_CHAR_CODE('exht')
kControlGroupBoxTitleRectTag = FOUR_CHAR_CODE('trec')

Control Data Tag Constants (Mac OS X Only)
kControlKindTag = FOUR_CHAR_CODE('kind')
kControlSizeTag = FOUR_CHAR_CODE('size')

Control Font Style Flag Constants
kControlUseFontMask = 0x0001
kControlUseFaceMask = 0x0002
kControlUseSizeMask = 0x0004
kControlUseForeColorMask = 0x0008
kControlUseBackColorMask = 0x0010
kControlUseModeMask = 0x0020
kControlUseJustMask = 0x0040
kControlUseAllMask = 0x00FF
kControlAddFontSizeMask = 0x0100

Meta Font Constants
kControlFontBigSystemFont = -1
kControlFontSmallSystemFont = -2
kControlFontSmallBoldSystemFont = -3
kControlFontViewSystemFont = -4

Push Button Icon Alignment
kControlPushButtonIconOnLeft = 6
kControlPushButtonIconOnRight = 7

Control Image Content
kControlContentIconSuiteRes = 1
kControlContentCIconRes = 2
kControlContentICONRes = 4
kControlContentIconSuiteHandle = 129
kControlContentCIconHandle = 130
kControlContentPictHandle = 131
kControlContentIconRef = 132
kControlContentICON = 133

Control Kind (Mac OS X Only)
kControlKindPushButton = 'push'
kControlKindPushIconButton = 'picn'
kControlKindCheckBox = 'cbox'
kControlKindRadioButton = 'rdio'
kControlKindScrollBar = 'sbar'
kControlKindPopupButton = 'popb'
kControlKindGroupBox = 'grpb'
kControlKindUserPane = 'upan'

Data Types
typedef struct OpaqueControlRef* ControlRef;
typedef ControlRef ControlHandle;
typedef SInt16 ControlPartCode;
typedef UInt16 ControlPushButtonIconAlignment;
typedef SInt16 ControlContentType;

7-30 Version 1.0 Introduction to Controls

Control Button Content Info
struct ControlButtonContentInfo
{
 ControlContentType contentType;
 union
 {
 SInt16 resID;
 CIconHandle cIconHandle;
 Handle iconSuite;
 IconRef iconRef;
 PicHandle picture;
 Handle ICONHandle;
 } u;
};
typedef struct ControlButtonContentInfo ControlButtonContentInfo;
typedef ControlButtonContentInfo *ControlButtonContentInfoPtr;

Control Font Style
struct ControlFontStyleRec
{
 SInt16 flags;
 SInt16 font;
 SInt16 size;
 SInt16 style;
 SInt16 mode;
 SInt16 just;
 RGBColor foreColor;
 RGBColor backColor;
};
typedef struct ControlFontStyleRec ControlFontStyleRec;
typedef ControlFontStyleRec *ControlFontStylePtr;

Control ID
struct ControlID
{
 OSType signature;
 SInt32 id;
};
typedef struct ControlIDControlID;

ControlKind
struct ControlKind
{
 OSType signature;
 OSType kind;
};
typedef struct ControlKind ControlKind;

Functions

Creating Controls
ControlRef GetNewControl(SInt16 controlID,WindowPtr owner);
ControlRef NewControl(WindowPtr owningWindow,const Rect *boundsRect,ConstStr255Param
 title,Boolean initiallyVisible,SInt16 initialValue,SInt16 minimumValue,
 SInt16 maximumValue,SInt16 procID,SInt32 controlReference);
OSStatus CreatePushButtonControl(WindowRef window,const Rect *boundsRect,
 ConstStr255Param title,ControlRef *outControl);
OSStatus CreatePushButtonWithIconControl(WindowRef window,const Rect *boundsRect,
 ConstStr255Param title,ControlButtonContentInfo *icon,
 ControlPushButtonIconAlignment iconAlignment,ControlRef *outControl);
OSStatus CreateRadioButtonControl(WindowRef window, const Rect *boundsRect,
 ConstStr255Param title,Boolean autoToggle,ControlRef *outControl);
OSStatus CreateCheckBoxControl(WindowRef window,const Rect *boundsRect,
 ConstStr255Param title,Boolean autoToggle,ControlRef *outControl);
OSStatus CreateScrollBarControl(WindowRef window,Rect *boundsRect,
 SInt32 value,SInt32 minimum,SInt32 maximum,SInt32 viewSize,
 Boolean liveTracking,ControlActionUPP liveTrackingProc,

Introduction to Controls Version 1.0 7-31

 ControlRef *outControl);
OSStatus CreatePopupButtonControl(WindowRef window,const Rect *boundsRect,
 ConstStr255Param title,SInt16 menuID,Boolean variableWidth,SInt16 titleWidth,
 SInt16 titleJustification,Style titleStyle,ControlRef *outControl);
OSStatus CreateGroupBoxControl(WindowRef window,const Rect *boundsRect,
 ConstStr255Param title,Boolean primary,ControlRef *outControl);
OSStatus CreateUserPaneControl(WindowRef window,const Rect *boundsRect,
 UInt32 features,ControlRef *outControl);

Removing Controls
void DisposeControl(ControlRef theControl);
void KillControls(WindowPtr theWindow);

Embedding Controls
OSErr CreateRootControl(WindowPtr inWindow,ControlRef *outControl);
OSErr GetRootControl(WindowPtr inWindow,ControlRef *outControl);
OSErr EmbedControl(ControlRef inControl,ControlRef inContainer);
OSErr AutoEmbedControl(ControlRef inControl,WindowPtr inWindow);
OSErr CountSubControl(ControlRef inControl,SInt16 *outNumChildren);
OSErr GetIndexedSubControl(ControlRef inControl,SInt16 inIndex,
 ControlRef * outSubControl);
OSErr GetSuperControl(ControlRef inControl,ControlRef *outParent);
OSErr SetControlSupervisor(ControlRef inControl,ControlRef inBoss);
OSErr DumpControlHierarchy(WindowPtr inWindow,const FSSpec *inDumpFile);

Displaying and Manipulating Controls
void MoveControl(ControlRef theControl,SInt16 h,SInt16 v);
void SizeControl(ControlRef theControl,SInt16 w,SInt16 h);
void UpdateControls(WindowPtr theWindow,RgnHandle updateRgn);
void DrawControls(WindowPtr theWindow);
void DrawOneControl(ControlRef theControl);
void DrawControlInCurrentPort(ControlRef inControl);
Boolean IsControlActive (ControlRef inControl);
OSErr ActivateControl (ControlRef inControl);
OSErr DeactivateControl(ControlRef inControl);
Boolean IsControlVisible(ControlRef inControl);
void HideControl(ControlRef theControl);
void ShowControl(ControlRef theControl);
OSErr SetControlVisibility (ControlRef inControl,Boolean inIsVisible,
 Boolean inDoDraw);
OSErr SendControlMessage(ControlRef inControl,SInt16 inMessage,SInt32 inParam);
void DragControl(ControlRef theControl,Point startPt,const Rect *limitRect,
 const Rect *slopRect,DragConstraint axis);
Boolean IsControlHilited(ControlRef control);
void HiliteControl(ControlRef theControl,ControlPartCode hiliteState);

Enabling and Disabling Controls (Mac OS X Only)
OSStatus EnableControl(ControlRef inControl);
OSStatus DisableControl(ControlRef inControl);
Boolean IsControlEnabled(ControlRef inControl);

Handling Events in Controls
ControlPartCode FindControl(Point thePoint,WindowPtr theWindow,ControlRef *theControl);
ControlRef FindControlUnderMouse(Point inWhere,WindowPtr inWindow,
 SInt16 *outPart);
ControlPartCode TrackControl(ControlRef theControl,Point thePoint,
 ControlActionUPP actionProc);
SInt16 HandleControlClick(ControlRef inControl,Point inWhere,SInt16 inModifiers,
 ControlActionUPP nAction);
ControlPartCode TestControl(ControlRef theControl, PointthePt);

Accessing and Changing Control Settings and Data
WindowPtr GetControlOwner(ControlRef control);
void SetControlOwner(ControlRef control,WindowPtr owner);
Rect * GetControlBounds(ControlRef control,Rect *bounds);
void SetControlBounds(ControlRef control,const Rect *bounds);
Boolean IsControlHilited(ControlRef control);
UInt16 GetControlHilite(ControlRef control);

7-32 Version 1.0 Introduction to Controls

Handle GetControlDefinition(ControlRef control);
Handle GetControlDataHandle(ControlRef control);
void SetControlDataHandle(ControlRef control,Handle dataHandle);
MenuHandle GetControlPopupMenuHandle(ControlRef control);
void SetControlPopupMenuHandle(ControlRef control,MenuHandle popupMenu);
short GetControlPopupMenuID(ControlRef control);
void SetControlPopupMenuID(ControlRef control,short menuID);
SInt16 GetControlValue(ControlRef theControl);
void SetControlValue(ControlRef theControl,SInt16 theValue);
SInt16 GetControlMinimum(ControlRef theControl);
void SetControlMinimum(ControlRef theControl,SInt16 newMinimum);
SInt16 GetControlMaximum(ControlRef theControl);
void SetControlMaximum(ControlRef theControl,SInt16 newMaximum);
SInt32 GetControl32BitValue(ControlRef theControl);
void SetControl32BitValue(ControlRef theControl,SInt32 newValue);
SInt32 GetControl32BitMaximum(ControlRef theControl);
void SetControl32BitMaximum(ControlRef theControl,SInt32 newMaximum);
SInt32 GetControl32BitMinimum(ControlRef theControl);
void SetControl32BitMinimum(ControlRef theControl,SInt32 newMinimum);
void GetControlTitle(ControlRef theControl,Str255 title);
void SetControlTitle(ControlRef theControl,ConstStr255Param title);
OSStatus SetControlTitleWithCFString(ControlRef inControl,CFStringRef inString);
SInt32 GetControlReference(ControlRef theControl);
void SetControlReference(ControlRef theControl,SInt32 data);
ControlActionUPP GetControlAction(ControlRef theControl);
void SetControlAction(ControlRef theControl,ControlActionUPP actionProc);
SInt32 GetControlViewSize(ControlRef theControl);
void SetControlViewSize(ControlRef theControl,SInt32 newViewSize);
SInt16 GetControlVariant(ControlRef theControl);
OSErr SetControlData(ControlRef inControl,ControlPartCode inPart,
 ResType inTagName,Size inSize,Ptr inData);
OSErr GetControlData (ControlRef inControl,ControlPartCode inPart,
 ResType inTagName,Size inBufferSize,Ptr inBuffer,Size *outActualSize);
OSErr GetControlDataSize(ControlRef inControl,ControlPartCode inPart,
 ResType inTagName,Size *outMaxSize);
OSErr SetControlVisibility(ControlRef inControl,Boolean inIsVisible,
 Boolean inDoDraw);

Setting the Control Font Style
OSErr SetControlFontStyle(ControlRef inControl,const ControlFontStyleRec *inStyle);

Setting and Getting Control IDs
OSStatus SetControlID(ControlRef inControl,const ControlID *inID);
OSStatus GetControlID(ControlRef inControl,ControlID *outID);
OSStatus GetControlByID(WindowRef inWindow,const ControlID *inID,ControlRef *outControl);

Getting Control Kind (Mac OS X Only)
OSStatus GetControlKind(ControlRef inControl,ControlKind *outControlKind);

Creating and Disposing of Universal Procedure Pointers for Control Action Functions
ControlActionUPP NewControlActionUPP(ControlActionProcPtr userRoutine);
void DisposeControlActionUPP(ControlActionUPP userUPP);

Application-Defined (Callback) Function
void myControlActionFunction(ControlRef theControl,ControlPartCode partCode);

Introduction to Controls Version 1.0 7-33

Demonstration Program Controls1 Listing
// ***
// Controls1.c CLASSIC EVENT MODEL
// ***
//
// This program opens a kWindowFullZoomGrowDocumentProc window containing:
//
// • Three pop-up menu buttons (fixed width, variable width and use window font variants).
//
// • Three non-auto-toggling radio buttons auto-embedded in a primary group box (text title
// variant).
//
// • Three non-auto-toggling checkboxes auto-embedded in a primary group box (text title
// variant).
//
// • Four push buttons (two basic, one left colour icon variant, and one right colour icon
// variant).
//
// • A vertical scroll bar (non live-feedback variant) and a horizontal scroll bar (live-
// feedback variant).
//
// Some controls are created using 'CNTL' resources. Others are created programmatically.
//
// The window also contains a window header frame in which is displayed:
//
// • The menu items chosen from the pop-up menus.
//
// • The identity of a push button when that push button is clicked.
//
// • Scroll bar control values when the scroll arrows or gray areas/tracks of the scroll bars
// are clicked and when the scroll box/scroller is dragged.
//
// The scroll bars are moved and resized when the user resizes or zooms the window; however,
// the scroll bars do not scroll the window contents.
//
// A Demonstration menu allows the user to deactivate the group boxes in which the radio
// buttons and checkboxes are embedded.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit, and Demonstration menus,
// and the pop-up menus (preload, non-purgeable).
//
// • A 'WIND' resource (purgeable) (initially not visible).
//
// • 'CNTL' resources for those controls not created programmatically.
//
// • Two 'cicn' resources (purgeable) for the colour icon variant buttons.
//
// • An 'hrct' resource and an 'hwin' resource (both purgeable), which provide help balloons
// describing the various controls.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

// …… includes

#include <Carbon.h>
#include <string.h>

// ……… defines

#define rMenubar 128

7-34 Version 1.0 Introduction to Controls

#define rWindow 128
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iQuit 12
#define mDemonstration 131
#define iColour 1
#define iGrids 2
#define cPopupFixed 128
#define cPopupWinFont 129
#define cRadiobuttonRed 130
#define cRadiobuttonBlue 131
#define cCheckboxGrid 132
#define cCheckboxGridsnap 133
#define cGroupBoxColour 134
#define cButton 135
#define cButtonLeftIcon 136
#define cScrollbarVert 137
#define kScrollBarWidth 15
#define MAX_UINT32 0xFFFFFFFF
#define MIN(a,b) ((a) < (b) ? (a) : (b))

// …… typedefs

typedef struct
{
 ControlRef popupFixedRef;
 ControlRef popupVariableRef;
 ControlRef popupWinFontRef;
 ControlRef groupboxColourRef;
 ControlRef groupboxGridsRef;
 ControlRef buttonRef;
 ControlRef buttonDefaultRef;
 ControlRef buttonLeftIconRef;
 ControlRef buttonRightIconRef;
 ControlRef radiobuttonRedRef;
 ControlRef radiobuttonWhiteRef;
 ControlRef radiobuttonBlueRef;
 ControlRef checkboxGridRef;
 ControlRef checkboxRulersRef;
 ControlRef checkboxGridSnapRef;
 ControlRef scrollbarVertRef;
 ControlRef scrollbarHorizRef;
} docStruc;

typedef docStruc **docStrucHandle;

// …… global variables

ControlActionUPP gActionFunctionVertUPP;
ControlActionUPP gActionFunctionHorizUPP;
Boolean gRunningOnX = false;
WindowRef gWindowRef;
Boolean gDone;
Boolean gInBackground = false;
Str255 gCurrentString;

// ……… function prototypes

void main (void);
void doPreliminaries (void);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
void doGetControls (WindowRef);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doMenuChoice (SInt32);
void doUpdate (EventRecord *);
void doActivate (EventRecord *);
void doActivateWindow (WindowRef,Boolean);

Introduction to Controls Version 1.0 7-35

void doOSEvent (EventRecord *);
void doInContent (EventRecord *,WindowRef);
void doPopupMenuChoice (WindowRef,ControlRef,SInt16);
void doVertScrollbar (ControlPartCode,WindowRef,ControlRef,Point);
void actionFunctionVert (ControlRef,ControlPartCode);
void actionFunctionHoriz (ControlRef,ControlPartCode);
void doMoveScrollBox (ControlRef,SInt16);
void doRadioButtons (ControlRef,WindowRef);
void doCheckboxes (ControlRef);
void doPushButtons (ControlRef,WindowRef);
void doAdjustScrollBars (WindowRef);
void doDrawMessage (WindowRef,Boolean);
void doConcatPStrings (Str255,Str255);
void doCopyPString (Str255,Str255);
void helpTags (WindowRef);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 docStrucHandle docStrucHdl;
 EventRecord EventStructure;

 // …… do preliminaries

 doPreliminaries();

 // ……… create universal procedure pointers

 gActionFunctionVertUPP = NewControlActionUPP((ControlActionProcPtr) actionFunctionVert);
 gActionFunctionHorizUPP = NewControlActionUPP((ControlActionProcPtr) actionFunctionHoriz);

 // ……… set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }

 gRunningOnX = true;
 }

 // ……… initial advisory text for window header

 doCopyPString("\pBalloon and Help tag help is available",gCurrentString);

 // …………………… open a window, set font size, set Appearance-compliant colour/pattern for window

 if(!(gWindowRef = GetNewCWindow(rWindow,NULL,(WindowRef) -1)))
 ExitToShell();

 SetPortWindowPort(gWindowRef);
 UseThemeFont(kThemeSmallSystemFont,smSystemScript);

7-36 Version 1.0 Introduction to Controls

 SetThemeWindowBackground(gWindowRef,kThemeBrushDialogBackgroundActive,false);

 // …………………………… get block for document structure, assign handle to window record refCon field

 if(!(docStrucHdl = (docStrucHandle) NewHandle(sizeof(docStruc))))
 ExitToShell();

 SetWRefCon(gWindowRef,(SInt32) docStrucHdl);

 // ……………………………………………………………… get controls, adjust scroll bars, get help tags, and show window

 doGetControls(gWindowRef);
 doAdjustScrollBars(gWindowRef);

 if(gRunningOnX)
 helpTags(gWindowRef);

 ShowWindow(gWindowRef);

// ……… enter eventLoop

 gDone = false;

 while(!gDone)
 {
 if(WaitNextEvent(everyEvent,&EventStructure,MAX_UINT32,NULL))
 doEvents(&EventStructure);
 }
}

// *** doPreliminaries

void doPreliminaries(void)
{
 OSErr osError;

 MoreMasterPointers(128);
 InitCursor();
 FlushEvents(everyEvent,0);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr)
 ExitToShell();
}

// ** doQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{
 OSErr osError;
 DescType returnedType;
 Size actualSize;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,0,
 &actualSize);

 if(osError == errAEDescNotFound)
 {
 gDone = true;
 osError = noErr;
 }
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

Introduction to Controls Version 1.0 7-37

// *** doGetControls

void doGetControls(WindowRef windowRef)
{
 ControlRef controlRef;
 docStrucHandle docStrucHdl;
 OSStatus osError;
 Rect popupVariableRect = { 73, 25, 93,245 };
 Rect radioButtonWhiteRect = { 183, 35,201, 92 };
 Rect checkboxRulersRect = { 183,138,201,242 };
 Rect groupboxGridsRect = { 136,123,236,252 };
 Rect buttonDefaultRect = { 252,141,272,210 };
 Rect buttonRightIconRect = { 285,141,305,220 };
 Rect scrollbarVertRect = { 0, 0, 16,100 };
 ControlButtonContentInfo buttonContentInfo;
 Boolean booleanData = true;
 ControlFontStyleRec controlFontStyleStruc;

 if(!gRunningOnX)
 CreateRootControl(windowRef,&controlRef);

 docStrucHdl = (docStrucHandle) (GetWRefCon(windowRef));

 // …… popup menu buttons

 if(!((*docStrucHdl)->popupFixedRef = GetNewControl(cPopupFixed,windowRef)))
 ExitToShell();

 if((osError = CreatePopupButtonControl(windowRef,&popupVariableRect,CFSTR("Time Zone:"),
 132,true,76,popupTitleLeftJust,popupTitleNoStyle,
 &(*docStrucHdl)->popupVariableRef)) == noErr)
 ShowControl((*docStrucHdl)->popupVariableRef);
 else
 ExitToShell();

 if(!((*docStrucHdl)->popupWinFontRef = GetNewControl(cPopupWinFont,windowRef)))
 ExitToShell();

 // ……… radio buttons

 if(!((*docStrucHdl)->radiobuttonRedRef = GetNewControl(cRadiobuttonRed,windowRef)))
 ExitToShell();

 if((osError = CreateRadioButtonControl(windowRef,&radioButtonWhiteRect,CFSTR("White"),0,
 false,&(*docStrucHdl)->radiobuttonWhiteRef)) == noErr)
 ShowControl((*docStrucHdl)->radiobuttonWhiteRef);
 else
 ExitToShell();

 if(!((*docStrucHdl)->radiobuttonBlueRef = GetNewControl(cRadiobuttonBlue,windowRef)))
 ExitToShell();

 // …… checkboxes

 if(!((*docStrucHdl)->checkboxGridRef = GetNewControl(cCheckboxGrid,windowRef)))
 ExitToShell();

 if((osError = CreateCheckBoxControl(windowRef,&checkboxRulersRect,CFSTR("Rulers"),0,false,
 &(*docStrucHdl)->checkboxRulersRef)) == noErr)
 ShowControl((*docStrucHdl)->checkboxRulersRef);
 else
 ExitToShell();

 if(!((*docStrucHdl)->checkboxGridSnapRef = GetNewControl(cCheckboxGridsnap,windowRef)))
 ExitToShell();

 // ……… group boxes

 if(!((*docStrucHdl)->groupboxColourRef = GetNewControl(cGroupBoxColour,windowRef)))

7-38 Version 1.0 Introduction to Controls

 ExitToShell();

 if((osError = CreateGroupBoxControl(windowRef,&groupboxGridsRect,CFSTR("Grids"),true,
 &(*docStrucHdl)->groupboxGridsRef)) == noErr)
 ShowControl((*docStrucHdl)->groupboxGridsRef);
 else
 ExitToShell();

 // …… push buttons

 if(!((*docStrucHdl)->buttonRef = GetNewControl(cButton,windowRef)))
 ExitToShell();

 if((osError = CreatePushButtonControl(windowRef,&buttonDefaultRect,CFSTR("OK"),
 &(*docStrucHdl)->buttonDefaultRef)) == noErr)
 ShowControl((*docStrucHdl)->buttonDefaultRef);
 else
 ExitToShell();

 if(!((*docStrucHdl)->buttonLeftIconRef = GetNewControl(cButtonLeftIcon,windowRef)))
 ExitToShell();

 buttonContentInfo.contentType = kControlContentCIconRes;
 buttonContentInfo.u.resID = 101;
 if((osError = CreatePushButtonWithIconControl(windowRef,&buttonRightIconRect,
 CFSTR("Button"),&buttonContentInfo,
 kControlPushButtonIconOnRight,
 &(*docStrucHdl)->buttonRightIconRef)) == noErr)
 ShowControl((*docStrucHdl)->buttonRightIconRef);
 else
 ExitToShell();

 // ……… scroll bars

 if(!((*docStrucHdl)->scrollbarVertRef = GetNewControl(cScrollbarVert,windowRef)))
 ExitToShell();

 if((osError = CreateScrollBarControl(windowRef,&scrollbarVertRect,0,0,100,100,true,
 gActionFunctionHorizUPP,
 &(*docStrucHdl)->scrollbarHorizRef)) == noErr)
 ShowControl((*docStrucHdl)->scrollbarHorizRef);
 else
 ExitToShell();

 // ………

 AutoEmbedControl((*docStrucHdl)->radiobuttonRedRef,windowRef);
 AutoEmbedControl((*docStrucHdl)->radiobuttonWhiteRef,windowRef);
 AutoEmbedControl((*docStrucHdl)->radiobuttonBlueRef,windowRef);
 AutoEmbedControl((*docStrucHdl)->checkboxGridRef,windowRef);
 AutoEmbedControl((*docStrucHdl)->checkboxRulersRef,windowRef);
 AutoEmbedControl((*docStrucHdl)->checkboxGridSnapRef,windowRef);

 SetControlData((*docStrucHdl)->buttonDefaultRef,kControlEntireControl,
 kControlPushButtonDefaultTag,sizeof(booleanData),&booleanData);

 controlFontStyleStruc.flags = kControlUseFontMask;
 controlFontStyleStruc.font = kControlFontSmallSystemFont;
 SetControlFontStyle((*docStrucHdl)->buttonLeftIconRef,&controlFontStyleStruc);
 controlFontStyleStruc.font = kControlFontSmallBoldSystemFont;
 SetControlFontStyle((*docStrucHdl)->buttonRightIconRef,&controlFontStyleStruc);

 DeactivateControl((*docStrucHdl)->checkboxRulersRef);
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)
{

Introduction to Controls Version 1.0 7-39

 SInt32 menuChoice;
 MenuID menuID;
 MenuItemIndex menuItem;

 switch(eventStrucPtr->what)
 {
 case kHighLevelEvent:
 AEProcessAppleEvent(eventStrucPtr);
 break;

 case keyDown:
 if((eventStrucPtr->modifiers & cmdKey) != 0)
 {
 menuChoice = MenuEvent(eventStrucPtr);
 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);
 if(menuID == mFile && menuItem == iQuit)
 gDone = true;
 }
 break;

 case mouseDown:
 doMouseDown(eventStrucPtr);
 break;

 case updateEvt:
 doUpdate(eventStrucPtr);
 break;

 case activateEvt:
 doActivate(eventStrucPtr);
 break;

 case osEvt:
 doOSEvent(eventStrucPtr);
 break;
 }
}

// *** doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{
 WindowPartCode partCode, zoomPart;
 WindowRef windowRef;
 Rect constraintRect, mainScreenRect, portRect;
 BitMap screenBits;
 Point standardStateHeightAndWidth;

 partCode = FindWindow(eventStrucPtr->where,&windowRef);

 switch(partCode)
 {
 case inMenuBar:
 doMenuChoice(MenuSelect(eventStrucPtr->where));
 break;

 case inContent:
 if(windowRef != FrontWindow())
 SelectWindow(windowRef);
 else
 doInContent(eventStrucPtr,windowRef);
 break;

 case inDrag:
 DragWindow(windowRef,eventStrucPtr->where,NULL);
 break;

 case inGoAway:

7-40 Version 1.0 Introduction to Controls

 if(TrackGoAway(windowRef,eventStrucPtr->where) == true)
 gDone = true;
 break;

 case inGrow:
 constraintRect.top = 341;
 constraintRect.left = 287;
 constraintRect.bottom = constraintRect.right = 32767;
 ResizeWindow(windowRef,eventStrucPtr->where,&constraintRect,NULL);
 doAdjustScrollBars(windowRef);
 doDrawMessage(windowRef,true);
 break;

 case inZoomIn:
 case inZoomOut:
 mainScreenRect = GetQDGlobalsScreenBits(&screenBits)->bounds;
 standardStateHeightAndWidth.v = mainScreenRect.bottom - 75;
 standardStateHeightAndWidth.h = 600;

 if(IsWindowInStandardState(windowRef,&standardStateHeightAndWidth,NULL))
 zoomPart = inZoomIn;
 else
 zoomPart = inZoomOut;

 if(TrackBox(windowRef,eventStrucPtr->where,partCode))
 {
 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 ZoomWindowIdeal(windowRef,zoomPart,&standardStateHeightAndWidth);
 doAdjustScrollBars(windowRef);
 }
 break;
 }
}

// ** doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{
 MenuID menuID;
 MenuItemIndex menuItem;
 MenuRef menuRef;
 WindowRef windowRef;
 docStrucHandle docStrucHdl;

 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);

 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mFile:
 if(menuItem == iQuit)
 gDone = true;
 break;

 case mDemonstration:
 menuRef = GetMenuRef(mDemonstration);
 windowRef = FrontWindow();
 docStrucHdl = (docStrucHandle) (GetWRefCon(windowRef));

 if(menuItem == iColour)

Introduction to Controls Version 1.0 7-41

 {
 if(IsControlVisible((*docStrucHdl)->groupboxColourRef))
 {
 HideControl((*docStrucHdl)->groupboxColourRef);
 SetMenuItemText(menuRef,iColour,"\pShow Colour");
 }
 else
 {
 ShowControl((*docStrucHdl)->groupboxColourRef);
 SetMenuItemText(menuRef,iColour,"\pHide Colour");
 }
 }
 else if(menuItem == iGrids)
 {
 if(IsControlActive((*docStrucHdl)->groupboxGridsRef))
 {
 DeactivateControl((*docStrucHdl)->groupboxGridsRef);
 SetMenuItemText(menuRef,iGrids,"\pActivate Grids");
 }
 else
 {
 ActivateControl((*docStrucHdl)->groupboxGridsRef);
 SetMenuItemText(menuRef,iGrids,"\pDeactivate Grids");
 }
 }
 break;
 }

 HiliteMenu(0);
}

// ** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 RgnHandle regionHdl;

 windowRef = (WindowRef) eventStrucPtr->message;

 BeginUpdate(windowRef);

 SetPortWindowPort(windowRef);
 doDrawMessage(windowRef,!gInBackground);

 if(regionHdl = NewRgn())
 {
 GetPortVisibleRegion(GetWindowPort(windowRef),regionHdl);
 UpdateControls(windowRef,regionHdl);
 DisposeRgn(regionHdl);
 }

 EndUpdate(windowRef);
}

// ** doActivate

void doActivate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 Boolean becomingActive;

 windowRef = (WindowRef) eventStrucPtr->message;
 becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);
 doActivateWindow(windowRef,becomingActive);
}

// ** doActivateWindow

7-42 Version 1.0 Introduction to Controls

void doActivateWindow(WindowRef windowRef,Boolean becomingActive)
{
 ControlRef controlRef;

 GetRootControl(windowRef,&controlRef);

 if(becomingActive)
 {
 ActivateControl(controlRef);
 doDrawMessage(windowRef,becomingActive);
 }
 else
 {
 DeactivateControl(controlRef);
 doDrawMessage(windowRef,becomingActive);
 }
}

// *** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{
 switch((eventStrucPtr->message >> 24) & 0x000000FF)
 {
 case suspendResumeMessage:
 if((eventStrucPtr->message & resumeFlag) == 1)
 {
 SetThemeCursor(kThemeArrowCursor);
 gInBackground = false;
 }
 else
 gInBackground = true;
 break;
 }
}

// *** doInContent

void doInContent(EventRecord *eventStrucPtr,WindowRef windowRef)
{
 docStrucHandle docStrucHdl;
 ControlRef controlRef;
 SInt16 controlValue, controlPartCode;

 docStrucHdl = (docStrucHandle) (GetWRefCon(windowRef));

 SetPortWindowPort(windowRef);
 GlobalToLocal(&eventStrucPtr->where);

 if(controlPartCode = FindControl(eventStrucPtr->where,windowRef,&controlRef))
 {
 if(controlRef == (*docStrucHdl)->popupFixedRef ||
 controlRef == (*docStrucHdl)->popupVariableRef ||
 controlRef == (*docStrucHdl)->popupWinFontRef)
 {
 TrackControl(controlRef,eventStrucPtr->where,(ControlActionUPP) -1);
 controlValue = GetControlValue(controlRef);
 doPopupMenuChoice(windowRef,controlRef,controlValue);
 }
 else if(controlRef == (*docStrucHdl)->scrollbarVertRef)
 {
 doVertScrollbar(controlPartCode,windowRef,controlRef,eventStrucPtr->where);
 }
 else if(controlRef == (*docStrucHdl)->scrollbarHorizRef)
 {
 TrackControl(controlRef,eventStrucPtr->where,gActionFunctionHorizUPP);
 }
 else
 {

Introduction to Controls Version 1.0 7-43

 if(TrackControl(controlRef,eventStrucPtr->where,NULL))
 {
 if(controlRef == (*docStrucHdl)->radiobuttonRedRef ||
 controlRef == (*docStrucHdl)->radiobuttonWhiteRef ||
 controlRef == (*docStrucHdl)->radiobuttonBlueRef)
 {
 doRadioButtons(controlRef,windowRef);
 }
 if(controlRef == (*docStrucHdl)->checkboxGridRef ||
 controlRef == (*docStrucHdl)->checkboxRulersRef ||
 controlRef == (*docStrucHdl)->checkboxGridSnapRef)
 {
 doCheckboxes(controlRef);
 }
 if(controlRef == (*docStrucHdl)->buttonRef ||
 controlRef == (*docStrucHdl)->buttonDefaultRef ||
 controlRef == (*docStrucHdl)->buttonLeftIconRef ||
 controlRef == (*docStrucHdl)->buttonRightIconRef)
 {
 doPushButtons(controlRef,windowRef);
 }
 }
 }
 }
}

// *** doPopupMenuChoice

void doPopupMenuChoice(WindowRef windowRef,ControlRef controlRef,SInt16 controlValue)
{
 MenuRef menuRef;
 Size actualSize;

 GetControlData(controlRef,kControlEntireControl,kControlPopupButtonMenuHandleTag,
 sizeof(menuRef),&menuRef,&actualSize);
 GetMenuItemText(menuRef,controlValue,gCurrentString);
 doDrawMessage(windowRef,true);
}

// *** doVertScrollbar

void doVertScrollbar(ControlPartCode controlPartCode,WindowRef windowRef,
 ControlRef controlRef,Point mouseXY)
{
 Str255 valueString;

 doCopyPString("\pScroll Bar Control Value: ",gCurrentString);

 switch(controlPartCode)
 {
 case kControlIndicatorPart:
 if(TrackControl(controlRef,mouseXY,NULL))
 {
 NumToString((SInt32) GetControlValue(controlRef),valueString);
 doConcatPStrings(gCurrentString,valueString);
 doDrawMessage(windowRef,true);
 }
 break;

 case kControlUpButtonPart:
 case kControlDownButtonPart:
 case kControlPageUpPart:
 case kControlPageDownPart:
 TrackControl(controlRef,mouseXY,gActionFunctionVertUPP);
 break;
 }
}

// ** actionFunctionVert

7-44 Version 1.0 Introduction to Controls

void actionFunctionVert(ControlRef controlRef,ControlPartCode controlPartCode)
{
 SInt16 scrollDistance, controlValue;
 Str255 valueString;
 WindowRef windowRef;

 doCopyPString("\pScroll Bar Control Value: ",gCurrentString);

 if(controlPartCode)
 {
 switch(controlPartCode)
 {
 case kControlUpButtonPart:
 case kControlDownButtonPart:
 scrollDistance = 2;
 break;

 case kControlPageUpPart:
 case kControlPageDownPart:
 scrollDistance = 55;
 break;
 }

 if((controlPartCode == kControlDownButtonPart) ||
 (controlPartCode == kControlPageDownPart))
 scrollDistance = -scrollDistance;

 controlValue = GetControlValue(controlRef);
 if(((controlValue == GetControlMaximum(controlRef)) && scrollDistance < 0) ||
 ((controlValue == GetControlMinimum(controlRef)) && scrollDistance > 0))
 return;

 doMoveScrollBox(controlRef,scrollDistance);

 NumToString((SInt32) GetControlValue(controlRef),valueString);
 doConcatPStrings(gCurrentString,valueString);
 windowRef = GetControlOwner(controlRef);
 doDrawMessage(windowRef,true);
 }
}

// *** actionFunctionHoriz

void actionFunctionHoriz(ControlRef controlRef,ControlPartCode controlPartCode)
{
 SInt16 scrollDistance, controlValue;
 Str255 valueString;
 WindowRef windowRef;

 doCopyPString("\pScroll Bar Control Value: ",gCurrentString);

 if(controlPartCode != kControlIndicatorPart)
 {
 switch(controlPartCode)
 {
 case kControlUpButtonPart:
 case kControlDownButtonPart:
 scrollDistance = 2;
 break;

 case kControlPageUpPart:
 case kControlPageDownPart:
 scrollDistance = 55;
 break;
 }

 if((controlPartCode == kControlDownButtonPart) ||
 (controlPartCode == kControlPageDownPart))

Introduction to Controls Version 1.0 7-45

 scrollDistance = -scrollDistance;

 controlValue = GetControlValue(controlRef);
 if(((controlValue == GetControlMaximum(controlRef)) && scrollDistance < 0) ||
 ((controlValue == GetControlMinimum(controlRef)) && scrollDistance > 0))
 return;

 doMoveScrollBox(controlRef,scrollDistance);
 }

 NumToString((SInt32) GetControlValue(controlRef),valueString);
 doConcatPStrings(gCurrentString,valueString);
 windowRef = GetControlOwner(controlRef);
 doDrawMessage(windowRef,true);
}

// *** doMoveScrollBox

void doMoveScrollBox(ControlRef controlRef,SInt16 scrollDistance)
{
 SInt16 oldControlValue, controlValue, controlMax;

 oldControlValue = GetControlValue(controlRef);
 controlMax = GetControlMaximum(controlRef);

 controlValue = oldControlValue - scrollDistance;

 if(controlValue < 0)
 controlValue = 0;
 else if(controlValue > controlMax)
 controlValue = controlMax;

 SetControlValue(controlRef,controlValue);
}

// ** doRadioButtons

void doRadioButtons(ControlRef controlRef,WindowRef windowRef)
{
 docStrucHandle docStrucHdl;

 docStrucHdl = (docStrucHandle) (GetWRefCon(windowRef));

 SetControlValue((*docStrucHdl)->radiobuttonRedRef,kControlRadioButtonUncheckedValue);
 SetControlValue((*docStrucHdl)->radiobuttonWhiteRef,kControlRadioButtonUncheckedValue);
 SetControlValue((*docStrucHdl)->radiobuttonBlueRef,kControlRadioButtonUncheckedValue);
 SetControlValue(controlRef,kControlRadioButtonCheckedValue);
}

// ** doCheckboxes

void doCheckboxes(ControlRef controlRef)
{
 SetControlValue(controlRef,!GetControlValue(controlRef));
}

// *** doPushButtons

void doPushButtons(ControlRef controlRef,WindowRef windowRef)
{
 docStrucHandle docStrucHdl;

 docStrucHdl = (docStrucHandle) (GetWRefCon(windowRef));

 if(controlRef == (*docStrucHdl)->buttonRef)
 {
 doCopyPString("\pButton",gCurrentString);
 doDrawMessage(windowRef,true);
 }

7-46 Version 1.0 Introduction to Controls

 else if(controlRef == (*docStrucHdl)->buttonDefaultRef)
 {
 doCopyPString("\pDefault Button",gCurrentString);
 doDrawMessage(windowRef,true);
 }
 else if(controlRef == (*docStrucHdl)->buttonLeftIconRef)
 {
 doCopyPString("\pLeft Icon Button",gCurrentString);
 doDrawMessage(windowRef,true);
 }
 else if(controlRef == (*docStrucHdl)->buttonRightIconRef)
 {
 doCopyPString("\pRight Icon Button",gCurrentString);
 doDrawMessage(windowRef,true);
 }
}

// ** doAdjustScrollBars

void doAdjustScrollBars(WindowRef windowRef)
{
 Rect portRect;
 docStrucHandle docStrucHdl;

 docStrucHdl = (docStrucHandle) (GetWRefCon(windowRef));

 GetWindowPortBounds(windowRef,&portRect);

 HideControl((*docStrucHdl)->scrollbarVertRef);
 HideControl((*docStrucHdl)->scrollbarHorizRef);

 MoveControl((*docStrucHdl)->scrollbarVertRef,portRect.right - kScrollBarWidth,
 portRect.top + 25);
 MoveControl((*docStrucHdl)->scrollbarHorizRef,portRect.left -1,
 portRect.bottom - kScrollBarWidth);

 SizeControl((*docStrucHdl)->scrollbarVertRef,16, portRect.bottom - 39);
 SizeControl((*docStrucHdl)->scrollbarHorizRef, portRect.right - 13,16);

 ShowControl((*docStrucHdl)->scrollbarVertRef);
 ShowControl((*docStrucHdl)->scrollbarHorizRef);

 SetControlMaximum((*docStrucHdl)->scrollbarVertRef,portRect.bottom - portRect.top - 25
 - kScrollBarWidth);
 SetControlMaximum((*docStrucHdl)->scrollbarHorizRef,portRect.right - portRect.left
 - kScrollBarWidth);
}

// *** doDrawMessage

void doDrawMessage(WindowRef windowRef,Boolean inState)
{
 Rect portRect, headerRect;
 CFStringRef stringRef;
 Rect textBoxRect;

 if(windowRef == gWindowRef)
 {
 SetPortWindowPort(windowRef);

 GetWindowPortBounds(windowRef,&portRect);

 SetRect(&headerRect,portRect.left - 1,portRect.top - 1,portRect.right + 1,
 portRect.top + 26);
 DrawThemeWindowHeader(&headerRect,inState);

 if(inState == kThemeStateActive)
 TextMode(srcOr);
 else

Introduction to Controls Version 1.0 7-47

 TextMode(grayishTextOr);

 stringRef = CFStringCreateWithPascalString(NULL,gCurrentString,
 kCFStringEncodingMacRoman);
 SetRect(&textBoxRect,portRect.left,6,portRect.right,21);
 DrawThemeTextBox(stringRef,kThemeSmallSystemFont,0,true,&textBoxRect,teJustCenter,NULL);
 if(stringRef != NULL)
 CFRelease(stringRef);

 TextMode(srcOr);
 }
}

// ** doConcatPStrings

void doConcatPStrings(Str255 targetString,Str255 appendString)
{
 SInt16 appendLength;

 appendLength = MIN(appendString[0],255 - targetString[0]);

 if(appendLength > 0)
 {
 BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
 targetString[0] += appendLength;
 }
}

// *** doCopyPString

void doCopyPString(Str255 sourceString,Str255 destinationString)
{
 SInt16 stringLength;

 stringLength = sourceString[0];
 BlockMove(sourceString + 1,destinationString + 1,stringLength);
 destinationString[0] = stringLength;
}

// ** helpTags

void helpTags(WindowRef windowRef)
{
 docStrucHandle docStrucHdl;
 HMHelpContentRec helpContent;

 memset(&helpContent,0,sizeof(helpContent));

 docStrucHdl = (docStrucHandle) (GetWRefCon(windowRef));

 HMSetTagDelay(500);
 HMSetHelpTagsDisplayed(true);
 helpContent.version = kMacHelpVersion;
 helpContent.tagSide = kHMOutsideTopCenterAligned;

 helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 128;

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 1;
 HMSetControlHelpContent((*docStrucHdl)->popupFixedRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 2;
 HMSetControlHelpContent((*docStrucHdl)->popupVariableRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 3;
 HMSetControlHelpContent((*docStrucHdl)->popupWinFontRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 4;
 HMSetControlHelpContent((*docStrucHdl)->groupboxColourRef,&helpContent);

7-48 Version 1.0 Introduction to Controls

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 5;
 HMSetControlHelpContent((*docStrucHdl)->groupboxGridsRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 6;
 HMSetControlHelpContent((*docStrucHdl)->buttonRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 7;
 HMSetControlHelpContent((*docStrucHdl)->buttonDefaultRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 8;
 HMSetControlHelpContent((*docStrucHdl)->buttonLeftIconRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 9;
 HMSetControlHelpContent((*docStrucHdl)->buttonRightIconRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 10;
 HMSetControlHelpContent((*docStrucHdl)->scrollbarVertRef,&helpContent);

 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 11;
 HMSetControlHelpContent((*docStrucHdl)->scrollbarHorizRef,&helpContent);
}

// ***

Introduction to Controls Version 1.0 7-49

Demonstration Program Controls1 Comments
When this program is run, the user should:

• On Mac OS 8/9, choose Show Balloons from the Help menu and peruse the help balloons which are invoked
when the mouse cursor is moved over the various controls.

• On Mac OS X, peruse the Help tags which are invoked when the mouse cursor is held over the various
controls.

• Choose items from each of the pop-up menu buttons, noting that the chosen item is displayed in the
window header.

• Click on the radio buttons, checkboxes, and push buttons, noting particularly that the radio button
settings are mutually exclusive and that checkbox settings are not.

• Click in the scroll bar arrows and gray areas/tracks of the scroll bars, noting the control value
changes displayed in the window header.

• Drag the scroll box/scroller of the vertical scroll bar (which uses the non-live-feedback CDEF
variant), noting that only a ghosted outline is dragged and that the control value does not change
until the mouse button is released.

• Drag the scroll box/scroller of the horizontal scroll bar (which uses the live-feedback CDEF variant),
noting that the scroll box proper is dragged and that the control value is continually updated during
the drag.

• Resize and zoom the window, noting (1) that the scroll bars are moved and resized in response to those
actions and (2) the change in the maximum value of the scroll bars.

• Send the program to the background and bring it to the foreground, noting the changes to the appearance
of the controls. (The program activates and deactivates the root control only; however, because all
controls are embedded in the root control, all controls are activated and deactivated along with the
root control.)

• Alternately hide and show the Colour primary group box by choosing the associated item in the
Demonstration menu. (The program hides and shows the primary group box only; however, because the
radio buttons are embedded in the primary group box, those controls hidden and shown along with the
primary group box.)

• Alternately activate and deactivate the Grids primary group box by choosing the associated item in the
Demonstration menu. (The program activates and deactivates the primary group box only; however,
because the checkboxes are embedded in the primary group box, those controls are activated and
deactivated along with the primary group box.) Also note the latency of the Show Rulers checkbox. It
is deactivated at program launch, and retains that status when the primary group box is deactivated and
then re-activated.

In this program (and all others that use Help tags), the header file string.h is included and the
library MSL C.PPC.Lib has been added to the project because of the use of memset in the function
helpTags.

If you wish to display the Help tags, rather than Balloon help, on Mac OS 8/9:

• Comment out the line "if(gRunningOnX)" before the line "helpTags(gWindowRef);"

• In the function helpTags, change "kHMOutsideTopCenterAligned" to "kHMOutsideLeftCenterAligned".
(At the time of writing, use of any but the first thirteen positioning constants in MacHelp.h
defeated the display of Help tags on Mac OS 8/9.)

Help tag creation is addressed at Chapter 25.

defines
Constants are established for 'CNTL' resources for those controls not created programmatically.

7-50 Version 1.0 Introduction to Controls

typedef
The data type docStruc is a structure comprising fields in which the references to the control objects for
the various controls will be stored. A handle to this structure will be stored in the window's window
object.

Global Variables
actionFunctionVertUPP and actionFunctionHorizUPP will be assigned universal procedure pointers to action
functions for the scroll bars.

main
Universal procedure pointers are created for the action functions for the two scroll bars.

The call to the function copyPString causes the string in the first parameter to be copied to the global
variable gCurrentString. The string in gCurrentString, which will be changed at various points in the
code, will be drawn in the window header frame.

The next block opens a window, makes the window's graphics port the current port, and sets the graphics
port's font to the small system font. This latter is because one of the pop-up menus will use the window
font. SetThemeWindowBackground is called to set the background colour/pattern for the window. The
window's background will be similar to that applying to Mac OS 8/9 dialogs, which is appropriate for a
window containing nothing but controls.

The call to NewHandle gets a relocatable block the size of one docStruc structure. The handle to the
block is stored in the window's window object by the call to SetWRefCon.

In the next block, doGetControls creates and draws the controls, doAdjustScrollBars resizes and locates
the scroll bars, and sets their maximum value, according to the dimensions of the window's port rectangle,
and ShowWindow makes the window visible.

Note that error handling here and in other areas of this demonstration program is somewhat rudimentary.
In the unlikely event that certain calls fail, ExitToShell is called to terminate the program.

doGetControls
The function doGetControls creates the controls.

At the first line, if the program is running on Mac OS 8/9, CreateRootControl is called to create a root
control for the window. On Mac OS 8/9, the first control created must be always be the root control
(which is implemented as a user pane). This call is not necessary on Mac OS X because, on Mac OS X, root
controls are created automatically for windows which have at least one control.

A handle to the structure in which the references to the control objects will be stored is then retrieved.

The controls are then created, some from 'CNTL' resources using GetNewControl and some programmatically.
All of these calls create a control object for the relevant control and insert the object into the control
list for the specified window. GetNewControl draws the controls created from 'CNTL' resources. In the
case of controls created programmatically, ShowControl must me called to cause the control to be drawn.
The reference to each control object is assigned to the appropriate field of the window's "document"
structure.

Because of the sequence in which the controls are created and initially drawn, the group boxes would
ordinarily over-draw the radio buttons and checkboxes. However, the calls to AutoEmbedControl embed these
latter controls in their respective group boxes, ensuring that they will be drawn after (or "on top of")
the group boxes. (AutoEmbedControl, rather than EmbedControl, is used in this instance because the radio
button rectangles are visually contained by their respective group box rectangles.)

The call to SetControlData, with kControlPushButtonDefaultTag passed in the third parameter causes the
default outline to be drawn around the specified push button.

In the next block, the title fonts of the left colour icon variant and right colour icon variant push
buttons are changed. Firstly, the flags and font fields of a control font style structure are assigned
constants so that the following call to SetControlFontStyle will set the title font of the left colour
icon variant push button to the small system font. The font field is then changed so that the second call
to SetControlFontStyle will set the title font of the right colour icon variant push button to the small
emphasized system font.

Lastly, the checkbox titled Rulers is disabled. This is for the purpose of the latency aspect of the
demonstration.

Introduction to Controls Version 1.0 7-51

doMouseDown
doMouseDown switches according to the window part in which a mouseDown event occurs.

At the inContent case, if the window in which the mouse-down occurred is the front window, and since all
of the controls are located in the window's content region, a call to the function doInContent is made.

The inGrow case is of particular significance to the scroll bars. Following the call to ResizeWindow, the
function doAdjustScrollBars is called to erase, move, resize, and redraw the scroll bars and reset the
control's maximum value according to the new size of the window. (The call to doDrawMessage is incidental
to the demonstration. It simply redraws the window header frame and text in the window.)

The inZoomIn/InZoomOut case is also of significance to the scroll bars. If the call to TrackBox returns a
non-zero value, the window's port rectangle is erased before ZoomWindowIdeal zooms the window. Following
the call to ZoomWindowIdeal the function doAdjustScrollBars is called to hide, move, resize, and redraw
the scroll bars.

doMenuChoice
doMenuChoice handles user choices from the pull-down menus.

The mDemonstration case handles the Demonstration menu. Firstly, reference to that menu and a handle to
the window's "document" structure are obtained.

If the menu item is the Colour item, IsControlVisible is called to determine the current visibility status
of the Colour group box. If it is visible, the call to HideControl hides the group box and its embedded
radio buttons; also, the menu item text is changed to "Show Colour". If it is not visible, ShowControl is
called and the menu item text is changed to "Hide Colour".

If the menu item is the Grids item, the same general sequence takes place in respect of the Grids group
box. This time, however, IsControlActive is used to determine whether the control is active or inactive,
and ActivateControl and DeactivateControl are called, and the menu item toggled, as appropriate. Note
that, because of latency, the application does not have to "remember" that one of the embedded checkboxes
was deactivated at program start. The Control Manager does the remembering.

doUpdate
doUpdate is called whenever the application receives an update event for its window. Between the usual
calls to BeginUpdate and EndUpdate (ignored on Mac OS X), the window's graphics port is set as the current
port for drawing, and UpdateControls is called to draw those controls intersecting the current visible
region (which, between the BeginUpdate and EndUpdate calls, equates to the Mac OS 8/9 update region). The
line preceding the if block is incidental to the demonstration. It simply redraws the window header frame
and text in the window.

doActivateWindow
doActivateWindow switches according to whether the specified window is becoming active or is about to be
made inactive. (Actually, doActivateWindow will never be called by doActivate in this program because the
program only opens one window. It will however, be called by the function doOSEvent.)

At the first line, GetRootControl gets a reference to the window's root control.

If the window is becoming active, ActivateControl is called to activate the root control. Since all other
controls are embedded in the root control, all controls will be activated by this call.

If the window is about to become inactive, DeactivateControl is called to deactivate the root control.
Since all other controls are embedded in the root control, all controls will be deactivated by this call.

The calls to doDrawMessage are incidental to the demonstration. They simply redraw the window header
frame and text in the window in the appropriate mode (inactive or active).

doOSEvent
doOSEvent handles operating system events. If the event is a suspend or resume event, a global variable
is then set to indicate whether the program has come to the foreground or has been sent to the background.
This global variable is used in doUpdate, and controls the colour in which the text in the window header
is drawn.

doInContent
doInContent further processes mouse-down events in the content region. Since the content region of the
window contains nothing but controls, this function is really just the main switching point for the
further handling of those controls.

7-52 Version 1.0 Introduction to Controls

The first line gets the handle to the "document" structure containing the references to the various
control objects. The call to SetPortWindowPort is a necessary precursor to the call to GlobalToLocal,
which converts the mouse coordinates in the event structure's where field from global coordinates to the
local coordinates required in the following call to FindControl. (FindControl is used here rather than
the newer function FindControlUnderMouse because there is no requirement to get a reference to a control
even if no part was hit and no requirement to determine whether a mouse-down event has occurred in a
deactivated control.)

If there is a control at the cursor location at which the mouse button is released, the control reference
returned by the FindControl call is first compared with the references to the pop-up menu controls stored
in the window's "document" structure. If a match is found, TrackControl is called with (ControlActionUPP)
-1 passed in the actionProc parameter so as to cause an action function within the control's CDEF to be
repeatedly invoked while the mouse button remains down. When TrackControl returns, the control value is
obtained by a call to GetControlValue and a function is called to perform further handling

Note that TrackControl, rather than the newer function HandleControlClick, is used in this program because
none of the controls require modifier keys to be passed in. (Of course, HandleControlClick would work
just as well (with 0 passed in the inModifiers parameter).)

If the control reference returned by FindControl does not match the pop-up controls' references, it is
then tested against the references to the vertical and horizontal scroll bar controls. If it matches the
reference to the vertical scroll bar (which uses the non-live-feedback CDEF variant), the function
doVertScrollbar is called to perform further handling. If it matches the reference to the horizontal
scroll bar (which uses the live-feedback CDEF variant), TrackControl is called (ControlActionUPP) –1
passed in the actionProc parameter. This latter is because the UPP to the control action function has
already been set. (Recall that it was passed in a parameter of the CreateScrollBarControl call which
created the control.) The net effect of is that the application-defined action function to which the UPP
relates will be repeatedly called while the mouse button remains down.

If the reference returned by FindControl does not match the references to any of the pop-up menu buttons
or scroll bars, it must be a reference to one of the other controls. In this case, TrackControl is
called, with the procPtr field set to that required for push buttons, radio buttons, and checkboxes (that
is, NULL). If the cursor is still within the control when the mouse button is released, the reference is
compared to, in sequence, the references to the radio buttons, the checkboxes, and the push buttons. If a
match is found, the appropriate function is called to perform further handling.

doPopupMenuChoice
doPopupMenuChoice further handles mouse-downs in the pop-up menu buttons. In this demonstration, the
further handling that would normally take place here is replaced by simply drawing the menu item text in
the window.

The call to GetControlData gets a reference to the control's menu, allowing GetMenuItemText to
get the item text into a global variable. This allows the text to be drawn in the window header frame.

doVertScrollbar
doVertScrollbar is called from doInContent in the case of a mouse-down in the vertical scroll bar (which
uses the non-live-feedback variant of the CDEF).

The call to copyPString is incidental to the demonstration. It simply copies some appropriate text to the
global variable gCurrentString.

At the next line, the function switches on the control part code. If the control part code was the scroll
box/scroller (that is, the "indicator"), TrackControl is called with the procPtr parameter set to that
required for the scroll box of non-live-feedback scroll bars (that is, NULL). If the user did not move
the cursor outside the control before releasing it, the if block executes, retrieving the new control
value, converting it to a string, appending that string to the string currently in gCurrentString, and
drawing gCurrentString in the window header. (In a real application, calculation of the distance and
direction to scroll, and the scrolling itself, would take place inside this if block.)

If the mouse down was in the gray area/track or one of the scroll arrows, TrackControl is called with a
Universal Procedure Pointer (UPP) passed in the actionProc parameter. The effect of this is that the
application-defined action function to which the UPP relates will be repeatedly called while the mouse
button remains down.

Introduction to Controls Version 1.0 7-53

ACTION FUNCTIONS
An action function is an example of a "callback function" (sometimes called a "hook function"). A
callback function is an application-defined function that is called by a Toolbox function during the
Toolbox function's execution, thus extending the features of the Toolbox function.

actionFunctionVert
actionFunctionVert is the action function called by TrackControl at the bottom of doVertScrollbar.
Because it is repeatedly called by TrackControl while the mouse button remains down, the scrolling such a
function would perform in a real application continues repeatedly until the mouse button is released
(provided the cursor remains within the scroll arrow or gray area/track).

The call to copyPString is incidental to the demonstration. It simply copies some appropriate text to the
global variable gCurrentString.

The if(controlPartCode) line ensures that, if the cursor is not still inside the scroll arrow or gray
area/track, the action function exits and all scrolling ceases until the user brings the cursor back
within the scroll arrow or gray area/track, causing a non-zero control part code to be again received.
The following occurs only when the cursor is within the control.

The function switches on the control part code. If the mouse-down is in a scroll arrow, the variable
scrollDistance is set to 2. If it is in a gray area, scrollDistance is set to 55. (In this simple
demonstration, these are just arbitrary values. In a real application, you would assign an appropriate
value in the case of the scroll arrows, and assign a calculated value (based primarily on current window
height) in the case of the gray areas/tracks.)

The next block convert the value in scrollDistance to the required negative value if the user is scrolling
down rather than up.

The next block defeats any further scrolling action if, firstly, the down scroll arrow is being used and
the "document" is at the maximum scrolled position or, secondly, the up scroll arrow is being used and the
"document" is at the minimum scrolled position.

The distance to scroll having been set, the call to the function doMoveScrollBox moves the scroll
box/scroller the appropriate distance in the appropriate direction and updates the control's value
accordingly. This means, of course, that the scroll box/scroller is being continually moved, and the
control's value continually updated, while the mouse button remains down.

In this demonstration, the remaining action is to retrieve the current value of the control, convert it to
a string, append it to the string currently in gCurrentString, and draw gCurrentString in the window
header frame. (In a real application, the actual scrolling of the window's contents would be effected
here.)

actionFunctionHoriz
actionFunctionHoriz is the action function passed in the actionProc parameter of the TrackControl call in
doInContent arising from a mouse-down in the horizontal scroll bar. This action function differs from
that for the vertical scroll bar because the horizontal scroll bar uses the live-feedback variant of the
CDEF.

The principal differences are that action functions for live-feedback scroll bars must continually scroll
the window's contents, not only while the mouse button remains down in the scroll arrows and gray areas,
but also while the scroll box/scroller is being dragged. Accordingly, this function, unlike the action
function for the vertical scroll bar, is also called while the mouse button remains down in the scroll
box/scroller.

The call to copyPString is incidental to the demonstration. It simply copies some appropriate text to the
global variable gCurrentString.

If the mouse-down occurred in the scroll box/scroller, the code which sets up the scroll distance, adjusts
the sign of the scroll distance according to whether the scroll is left or right, prevents scrolling
beyond the minimum and maximum scroll values, and calls doMoveScrollBox to move the scroll box/scroller
and update the control's value, is bypassed. The call to doMoveScrollBox is bypassed because, in live-
feedback, the CDEF moves the scroll box/scroller and updates the control's value when the mouse-down is in
the scroll box/scroller.

In this demonstration, the action taken after the main block of code has been bypassed (mouse-down in the
scroll box/scroller) or executed (mouse-down in the scroll arrows or gray area/track) is to retrieve the

7-54 Version 1.0 Introduction to Controls

current value of the control, convert it to a string, append it to the string currently in gCurrentString,
and draw gCurrentString in the window header frame. (In a real application, the actual scrolling of the
window's contents would be effected here.)

doMoveScrollBox
doMoveScrollBox is called from within the action functions to reset the control's current value to reflect
the scrolled distance, and to reposition the scroll box/scroller accordingly.

The first two lines retrieve the control's current value and maximum value. The next line calculates the
new control value by subtracting the distance to scroll received from the calling action function from the
current control value. The next four lines prevent the control's value from being set lower or higher
than the control's minimum and maximum values respectively. The call to SetControlValue sets the new
control value and repositions the scroll box/scroller.

doRadioButtons
doRadioButtons is called when the mouse-down is within a radio button. The first three calls to
SetControlValue set all radio buttons to the off state. The final call sets the radio button under the
mouse to the on state.

doCheckboxes
doCheckboxes is called when the mouse-down is within a checkbox. The single line simply toggles the
current value of the control.

doPushButtons
doPushButtons is called when the mouse-down is within a push button. In this demonstration, the only
action taken is to draw the identity of the push button in the window header frame.

doAdjustScrollBars
doAdjustScrollBars is called if the user resizes or zooms the window.

At the first line, a handle to the window's "document" structure is retrieved from the window object.

At the next line, the coordinates representing the window's current content region are assigned to a Rect
variable which will be used in calls to MoveControl and SizeControl.

Amongst other things, MoveControl and SizeControl both redraw the specified scroll bar. Since SizeControl
will be called immediately after MoveControl, this will causes a very slight flickering of the scroll
bars. To prevent this, the scroll bars will be hidden while these two functions are executing.

The calls to HideControl hide the scroll bars. The calls to MoveControl erase the scroll bars, offset the
contrlRect fields of their control structures, and redraw the scroll bars within the offset rectangle.
SizeControl hides the scroll bars (in this program they are already hidden), adjusts the contrlRect fields
of their control structures, and redraws the scroll bars within their new rectangles. The calls to
ShowControl then show the scroll bars.

In this demonstration, the remaining lines set the new maximum values for the scroll bars according to the
new height and width of the window. No attempt is made to calculate the required new control value to
ensure that the (non-existent) document remains in the same scrolled position after the zoom or resize.
In a real application, this, plus the calculation of the maximum value according to, for example, the line
height of text content as well as the new window height, are matters that would need to be attended to in
this function.

Introduction to Controls Version 1.0 7-55

Demonstration Program Controls2 Listing
// ***
// Controls2.c CLASSIC EVENT MODEL
// ***
//
// This program:
//
// • Opens a kWindowDocumentProc window with a two horizontal scroll bars, each of which
// relates to the picture displayed immediately above it.
//
// • Allows the user to horizontally scroll the pictures within the window using the scroll
// box/scroller, the scroll arrows and the gray area/track of each scroll bar.
//
// The top scroll bar uses the non-live-feedback variant of the scroll bar CDEF. The bottom
// scroll bar uses the live-feedback variant.
//
// With regard to the scroll bars, the principal differences between this program and
// Controls1 are that, in this program:
//
// • The scroll bar scroll boxes are made proportional.
//
// • The action functions are set using the function SetControlAction.
//
// • References to the scroll bar controls are not stored in, and retrieved from, a document
// structure associated with the window. Instead, each control is assigned a controlID
// using SetControlID, allowing the ID of the control to be retrieved using GetControlID
// and a reference to the control to be obtained using GetControlByID.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File and Edit (preload, non-
// purgeable).
//
// • A 'WIND' resource (purgeable) (initially visible).
//
// • Two 'CNTL' resource for the horizontal scroll bars (purgeable).
//
// • 'PICT' resources containing the pictures to be scrolled (non-purgeable).
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

// …… includes

#include <Carbon.h>

// ……… defines

#define rMenubar 128
#define rNewWindow 128
#define rPictureNonLive 128
#define rPictureLive 129
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iQuit 12
#define cScrollbarNonLive 128
#define cScrollbarLive 129
#define kScrollbarNonLiveID 1
#define kScrollbarLiveID 2
#define MAX_UINT32 0xFFFFFFFF

// …… global variables

7-56 Version 1.0 Introduction to Controls

ControlActionUPP gActionFuncNonLiveUPP;
ControlActionUPP gActionFuncLiveUPP;
Boolean gDone;
Rect gPictRectNonLive, gPictRectLive;
PicHandle gPictHandleNonLive, gPictHandleLive ;

// ……… function prototypes

void main (void);
void doPreliminaries (void);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doUpdate (EventRecord *);
void doActivate (EventRecord *);
void doActivateWindow (WindowRef,Boolean);
void doOSEvent (EventRecord *);
void doMenuChoice (SInt32);
void doInContent (EventRecord *,WindowRef);
void doNonLiveScrollBars (ControlPartCode,WindowRef,ControlRef,Point);
void actionFuncNonLive (ControlRef,ControlPartCode);
void actionFuncLive (ControlRef,ControlPartCode);
void doMoveScrollBox (ControlRef,SInt16);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 WindowRef windowRef;
 ControlRef controlRefScrollbarNonLive, controlRefScrollbarLive;
 ControlID controlID;
 Rect portRect;
 EventRecord eventStructure;

 // …… do preliminaries

 doPreliminaries();

 // ……… create universal procedure pointers

 gActionFuncNonLiveUPP = NewControlActionUPP((ControlActionProcPtr) actionFuncNonLive);
 gActionFuncLiveUPP = NewControlActionUPP((ControlActionProcPtr) actionFuncLive);

 // ……… set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }
 }

 // ……… open a window

Introduction to Controls Version 1.0 7-57

 if(!(windowRef = GetNewCWindow(rNewWindow,NULL,(WindowRef)-1)))
 ExitToShell();

 SetPortWindowPort(windowRef);

 // ……………………………………………………………………………………………… get controls and set ID and control action functions

 controlRefScrollbarNonLive = GetNewControl(cScrollbarNonLive,windowRef);
 controlID.signature = 'kjB ';
 controlID.id = kScrollbarNonLiveID;
 SetControlID(controlRefScrollbarNonLive,&controlID);

 SetControlAction(controlRefScrollbarNonLive,gActionFuncNonLiveUPP);

 controlRefScrollbarLive = GetNewControl(cScrollbarLive,windowRef);
 controlID.id = kScrollbarLiveID;
 SetControlID(controlRefScrollbarLive,&controlID);

 SetControlAction(controlRefScrollbarLive,gActionFuncLiveUPP);

 // ……… get picture

 if(!(gPictHandleNonLive = GetPicture(rPictureNonLive)))
 ExitToShell();
 gPictRectNonLive = (*gPictHandleNonLive)->picFrame;

 if(!(gPictHandleLive = GetPicture(rPictureLive)))
 ExitToShell();
 gPictRectLive = (*gPictHandleLive)->picFrame;
 OffsetRect(&gPictRectLive,0,191);

 // …… set up for proportional scroll boxes

 GetWindowPortBounds(windowRef,&portRect);
 SetControlViewSize(controlRefScrollbarNonLive,portRect.right);
 SetControlViewSize(controlRefScrollbarLive,portRect.right);

 // ……… enter eventLoop

 gDone = false;

 while(!gDone)
 {
 if(WaitNextEvent(everyEvent,&eventStructure,MAX_UINT32,NULL))
 doEvents(&eventStructure);
 }
}

// *** doPreliminaries

void doPreliminaries(void)
{
 OSErr osError;

 MoreMasterPointers(32);
 InitCursor();
 FlushEvents(everyEvent,0);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr)
 ExitToShell();
}

// ** doQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{

7-58 Version 1.0 Introduction to Controls

 OSErr osError;
 DescType returnedType;
 Size actualSize;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,0,
 &actualSize);

 if(osError == errAEDescNotFound)
 {
 gDone = true;
 osError = noErr;
 }
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)
{
 switch(eventStrucPtr->what)
 {
 case kHighLevelEvent:
 AEProcessAppleEvent(eventStrucPtr);
 break;

 case mouseDown:
 doMouseDown(eventStrucPtr);
 break;

 case updateEvt:
 doUpdate(eventStrucPtr);
 break;

 case activateEvt:
 doActivate(eventStrucPtr);
 break;

 case osEvt:
 doOSEvent(eventStrucPtr);
 break;
 }
}

// *** doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 WindowPartCode partCode;

 partCode = FindWindow(eventStrucPtr->where,&windowRef);

 switch(partCode)
 {
 case inMenuBar:
 doMenuChoice(MenuSelect(eventStrucPtr->where));
 break;

 case inContent:
 if(windowRef != FrontWindow())
 SelectWindow(windowRef);
 else
 doInContent(eventStrucPtr,windowRef);
 break;

 case inDrag:

Introduction to Controls Version 1.0 7-59

 DragWindow(windowRef,eventStrucPtr->where,NULL);
 break;
 }
}

// ** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 RgnHandle regionHdl;
 ControlID controlID;
 ControlRef controlRef;

 windowRef = (WindowRef) eventStrucPtr->message;

 BeginUpdate(windowRef);

 SetPortWindowPort(windowRef);

 regionHdl = NewRgn();
 if(regionHdl)
 {
 GetPortVisibleRegion(GetWindowPort(windowRef),regionHdl);
 UpdateControls(windowRef,regionHdl);
 DisposeRgn(regionHdl);
 }

 controlID.signature = 'kjB ';
 controlID.id = kScrollbarNonLiveID;
 GetControlByID(windowRef,&controlID,&controlRef);
 SetOrigin(GetControlValue(controlRef),0);
 DrawPicture(gPictHandleNonLive,&gPictRectNonLive);
 SetOrigin(0,0);

 controlID.id = kScrollbarLiveID;
 GetControlByID(windowRef,&controlID,&controlRef);
 SetOrigin(GetControlValue(controlRef),0);
 DrawPicture(gPictHandleLive,&gPictRectLive);
 SetOrigin(0,0);

 EndUpdate(windowRef);
}

// ** doActivate

void doActivate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 Boolean becomingActive;

 windowRef = (WindowRef) eventStrucPtr->message;
 becomingActive = ((eventStrucPtr->modifiers & activeFlag) == activeFlag);
 doActivateWindow(windowRef,becomingActive);
}

// ** doActivateWindow

void doActivateWindow(WindowRef windowRef,Boolean becomingActive)
{
 ControlID controlID;
 ControlRef controlRefScrollbarNonLive, controlRefScrollbarLive;

 controlID.signature = 'kjB ';
 controlID.id = kScrollbarNonLiveID;
 GetControlByID(windowRef,&controlID,&controlRefScrollbarNonLive);
 controlID.id = kScrollbarLiveID;
 GetControlByID(windowRef,&controlID,&controlRefScrollbarLive);

7-60 Version 1.0 Introduction to Controls

 if(becomingActive)
 {
 ActivateControl(controlRefScrollbarNonLive);
 ActivateControl(controlRefScrollbarLive);
 }
 else
 {
 DeactivateControl(controlRefScrollbarNonLive);
 DeactivateControl(controlRefScrollbarLive);
 }
}

// *** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{
 switch((eventStrucPtr->message >> 24) & 0x000000FF)
 {
 case suspendResumeMessage:
 if((eventStrucPtr->message & resumeFlag) == 1)
 SetThemeCursor(kThemeArrowCursor);
 break;
 }
}

// ** doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{
 MenuID menuID;
 MenuItemIndex menuItem;

 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);

 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mFile:
 if(menuItem == iQuit)
 gDone = true;
 break;
 }

 HiliteMenu(0);
}

// *** doIncontent

void doInContent(EventRecord *eventStrucPtr,WindowRef windowRef)
{
 ControlPartCode controlPartCode;
 ControlRef controlRef;
 ControlID controlID;

 SetPortWindowPort(windowRef);
 GlobalToLocal(&eventStrucPtr->where);

 if(controlPartCode = FindControl(eventStrucPtr->where,windowRef,&controlRef))
 {
 GetControlID(controlRef,&controlID);

Introduction to Controls Version 1.0 7-61

 if(controlID.id == kScrollbarNonLiveID)
 doNonLiveScrollBars(controlPartCode,windowRef,controlRef,eventStrucPtr->where);
 else if(controlID.id == kScrollbarLiveID)
 TrackControl(controlRef,eventStrucPtr->where,(ControlActionUPP) -1);
 }
}

// *** doNonLiveScrollBars

void doNonLiveScrollBars(ControlPartCode controlPartCode,WindowRef windowRef,
 ControlRef controlRef,Point mouseXY)
{
 SInt16 oldControlValue;
 SInt16 scrollDistance;
 RgnHandle updateRgnHdl;

 switch(controlPartCode)
 {
 case kControlIndicatorPart:
 oldControlValue = GetControlValue(controlRef);
 if(TrackControl(controlRef,mouseXY,NULL))
 {
 scrollDistance = oldControlValue - GetControlValue(controlRef);
 if(scrollDistance != 0)
 {
 updateRgnHdl = NewRgn();
 ScrollRect(&gPictRectNonLive,scrollDistance,0,updateRgnHdl);
 InvalWindowRgn(windowRef,updateRgnHdl);
 DisposeRgn(updateRgnHdl);
 }
 }
 break;

 case kControlUpButtonPart:
 case kControlDownButtonPart:
 case kControlPageUpPart:
 case kControlPageDownPart:
 TrackControl(controlRef,mouseXY,(ControlActionUPP) -1);
 break;
 }
}

// *** actionFuncNonLive

void actionFuncNonLive(ControlRef controlRef,ControlPartCode controlPartCode)
{
 WindowRef windowRef;
 SInt16 scrollDistance, controlValue;
 Rect portRect;
 RgnHandle updateRgnHdl;

 if(controlPartCode)
 {
 windowRef = GetControlOwner(controlRef);

 switch(controlPartCode)
 {
 case kControlUpButtonPart:
 case kControlDownButtonPart:
 scrollDistance = 2;
 break;

 case kControlPageUpPart:
 case kControlPageDownPart:
 GetWindowPortBounds(windowRef,&portRect);
 scrollDistance = (portRect.right - portRect.left - 10);
 break;
 }

7-62 Version 1.0 Introduction to Controls

 if((controlPartCode == kControlDownButtonPart) ||
 (controlPartCode == kControlPageDownPart))
 scrollDistance = -scrollDistance;

 controlValue = GetControlValue(controlRef);
 if(((controlValue == GetControlMaximum(controlRef)) && scrollDistance < 0) ||
 ((controlValue == GetControlMinimum(controlRef)) && scrollDistance > 0))
 return;

 doMoveScrollBox(controlRef,scrollDistance);

 if(controlPartCode == kControlUpButtonPart ||
 controlPartCode == kControlDownButtonPart)
 {
 updateRgnHdl = NewRgn();
 ScrollRect(&gPictRectNonLive,scrollDistance,0,updateRgnHdl);
 InvalWindowRgn(windowRef,updateRgnHdl);
 DisposeRgn(updateRgnHdl);
 BeginUpdate(windowRef);
 }

 SetOrigin(GetControlValue(controlRef),0);
 DrawPicture(gPictHandleNonLive,&gPictRectNonLive);
 SetOrigin(0,0);

 if(controlPartCode == kControlUpButtonPart || controlPartCode == kControlDownButtonPart)
 EndUpdate(windowRef);
 }
}

// *** actionFuncLive

void actionFuncLive(ControlRef controlRef,ControlPartCode partCode)
{
 WindowRef windowRef;
 SInt16 scrollDistance, controlValue;
 Rect portRect;

 windowRef = GetControlOwner(controlRef);

 if(partCode != 0)
 {
 if(partCode != kControlIndicatorPart)
 {
 switch(partCode)
 {
 case kControlUpButtonPart:
 case kControlDownButtonPart:
 scrollDistance = 2;
 break;

 case kControlPageUpPart:
 case kControlPageDownPart:
 GetWindowPortBounds(windowRef,&portRect);
 scrollDistance = (portRect.right - portRect.left) - 10;
 break;
 }

 if((partCode == kControlDownButtonPart) || (partCode == kControlPageDownPart))
 scrollDistance = -scrollDistance;

 controlValue = GetControlValue(controlRef);
 if(((controlValue == GetControlMaximum(controlRef)) && scrollDistance < 0) ||
 ((controlValue == GetControlMinimum(controlRef)) && scrollDistance > 0))
 return;

 doMoveScrollBox(controlRef,scrollDistance);
 }

Introduction to Controls Version 1.0 7-63

 SetOrigin(GetControlValue(controlRef),0);
 DrawPicture(gPictHandleLive,&gPictRectLive);
 SetOrigin(0,0);
 }
}

// *** doMoveScrollBox

void doMoveScrollBox(ControlRef controlRef,SInt16 scrollDistance)
{
 SInt16 oldControlValue, controlValue, controlMax;

 oldControlValue = GetControlValue(controlRef);
 controlMax = GetControlMaximum(controlRef);

 controlValue = oldControlValue - scrollDistance;

 if(controlValue < 0)
 controlValue = 0;
 else if(controlValue > controlMax)
 controlValue = controlMax;

 SetControlValue(controlRef,controlValue);
}

// ***

7-64 Version 1.0 Introduction to Controls

Demonstration Program Controls2 Comments
This program is basically an extension of the scroll bars aspects of the demonstration program Controls1
in that, unlike the scroll bars in Controls1, the scroll bars in this program actually scroll the contents
of the window. Also, this program supports proportional scroll boxes/scrollers.

When the program is run, the user should scroll the pictures by dragging the scroll boxes/scrollers,
clicking in the scroll bar gray areas/tracks, clicking in the scroll arrows and holding the mouse button
down while the cursor is in the gray areas/travks and scroll arrows. The user should note, when scrolling
with the scroll boxes/scrollers, that the top scroll bar uses the non-live-feedback variant of the scroll
bar CDEF and the bottom scroll bar uses the live-feedback variant, this latter to facilitate the program's
live-scrolling of the bottom picture.

The pictures scrolled in this demonstration are, respectively 1220 by 175 pixels and 915 by 175 pixels.
"pane" for each picture and scroll bar is 400 pixels wide by 175 pixels high, the 'CNTL' resources set the
control maximum values to 820 and 515 respectively, and the control rectangles specified in the 'CNTL'
resource locate the scroll bars in the correct position in the non-resizable, non-zoomable window.

As an incidental aspect of the demonstration, two different methods are used to scroll the pictures when
the scroll arrows are being used. In the top picture, at each pass through the action function, the
pixels are scrolled using ScrollRect, the "vacated" area is invalidated, and only this vacated area is
redrawn. In the bottom picture, at each pass through the action function, the whole visible part of the
picture is redrawn. The user should note that the first method results in some flickering in the
"vacated" area when the picture is scrolled, and that the second method eliminates this flickering at the
cost of some horizontal "tearing" of the picture caused by the way in which the image is drawn by the
monitor on its screen.

The following comments are limited to those areas which are significantly different from the same areas in
the demonstration program Controls1.

defines
kScrollbarNonLiveID and kScrollbarLiveID will be assigned as the IDs of, respectively, the top (non-live)
scroll bar and the bottom (live) scroll bar.

main
Two calls to GetNewControl allocate memory for the control objects, insert the control objects into the
window's control list and draw the controls.

Following each call to GetNewControl:

• The id field of a variable of type ControlID is assigned the appropriate ID value for the specific
control and the ID is then assigned to the control by a call to SetControlID.

• SetControlAction is called with a UPP passed in the actionProc parameter. The effect of this is that
the application-defined action function to which the UPP relates will be repeatedly called while the
mouse button remains down. As a consequence of using SetControlAction, (ControlActionUPP) -1 will be
passed in TrackControl's actionProc parameter.

Note that no root control is created in this program; accordingly, the two controls will be activated and
deactivated individually.

In the next block, two 'PICT' resources are loaded, the associated handles being assigned to two global
variables. In each case, the picture structure's picFrame field (a Rect) is copied to a global variable.
In the case of the second picture, this rectangle is then offset downwards by 191 pixels. (Note that the
two 'PICT' resources were created so that the top and left fields of the picFrame Rect are both zero.)

In the next block, the width of the port rectangle is passed in the newViewSize parameter of calls to
SetControlViewSize. (In this case, the view width is the same as the width of the port rectangle. This
value is in the same units of measurement as are used for the scroll bar minimum, maximum, and current
values.) This makes the scroll boxes proportional (on Mac OS 8/9, provided that the user has selected
Smart Scrolling on in the Options tab of the Appearance control panel).

doUpdate
In the two blocks which draw the pictures, the first call to SetOrigin sets the window origin to the
current scroll position, that is, to the position represented by the control's current value, thus
ensuring that the correct part of the picture will be drawn by the call to DrawPicture. The second call
to SetOrigin resets the window's origin to (0,0).

Introduction to Controls Version 1.0 7-65

Note that GetControlByID is used to retrieve references to the two controls.

DoActivateWindow
Note that GetControlByID is used to retrieve references to the two controls.

doInContent
doInContent establishes whether a mouse-down event was in one of the scroll bars and, if so, branches
accordingly.

The call to GlobalToLocal converts the global coordinates of the mouse-down, stored in the where field of
the event structure, to the local coordinates required by FindControl. If the call to FindControl returns
a non-zero result, the mouse-down was in a scroll bar.

If the mouse-down was in a scroll bar, GetControlID is called to get the ID of the control. Then, as in
the demonstration program Controls1:

• If the mouse-down was in the non-live-feedback scroll bar, one of the application’s functions is called
to further handle the mouse-down event.

• If the mouse-down was in the live-feedback scroll bar, TrackControl is called with (ControlActionUPP) -
1 passed in the actionProc parameter. This means that the application-defined (callback) function
associated with the UPP previously set by SetControlAction will be continually called while the mouse
button remains down.

doNonLiveScrollBars
doNonLiveScrollBars is similar to its sister function in Controls1 except that it actually scrolls the
window's contents.

At the first line, the function switches on the control part code:

• If the mouse-down was in the scroll box/scroller (that is, the "indicator"), the control's value at the
time of the mouse-down is retrieved. Control is then handed over to TrackControl, which tracks user
actions while the mouse button remains down. If the user releases the mouse button with the cursor
inside the scroll box/scroller, the scroll distance (in pixels) is calculated by subtracting the
control's value prior to the scroll from its current value. If the user moved the scroll box/scroller,
the picture's pixels are scrolled by the specified scroll distance in the appropriate direction, and
the "vacated" area of the window following the scroll is added to the (currently empty) window update
region (Mac OS 8/9). This means that an update event will be generated for the window and that the re-
draw of the picture will be attended to in the doUpdate function.

• If the mouse-down was in a scroll arrow or gray area/track, more specifically in one of the non-live-
feedback's scroll bar's scroll arrows or gray areas/tracks, TrackControl takes control until the user
releases the mouse button. The third parameter in the TrackControl call means that the application-
defined (callback) function associated with the UPP set by SetControlAction will be continually called
while the mouse button remains down.

actionFunctionNonLive
actionFunctionNonLive is the action function for the non-live-feedback scroll bar. Because it is
repeatedly called by TrackControl while the mouse button remains down, the scrolling it performs continues
repeatedly until the mouse button is released.

Firstly, if the cursor is not still inside the scroll arrow or gray area/track, the action function exits.
The following occurs only when the cursor is within the control.

A reference to the window which "owns" this control is retrieved from the control object.

If the control part being used by the user to perform the scrolling is one of the scroll arrows, the
distance to scroll (in pixels) is set to 2. If the control part being used is one of the gray
areas/track, the distance to scroll is set to the width of the window's content region minus 10 pixels.
(Subtracting 10 pixels ensures that a small part of the pre-scroll display will appear at right or left
(depending on the direction of scroll) of the post-scroll display.)

The first block following the switch converts the distance to scroll to the required negative value if the
user is scrolling towards the right. The second block defeats any further scrolling action if, firstly,
the left scroll arrow is being used, the mouse button is still down and the document is at the minimum
(left) scrolled position or, secondly, the right scroll arrow is being used, the mouse button is still
down and the document is at the maximum (right) scrolled position.

7-66 Version 1.0 Introduction to Controls

With the scroll distance determined, the call to the function doMoveScrollBox adds/subtracts the distance
to scroll to/from the control's current value and repositions the scroll box/scroller accordingly.

At this stage, the picture scrolling takes place. If scrolling is being effected using the scroll arrows,
ScrollRect scrolls the picture's pixels by the specified amount, and in the specified direction, as
represented by the distance-to-scroll value. The "vacated" area is then added to the window's update
region (previously empty) by the call to InvalWindowRgn, and BeginUpdate is called to ensure that, on Mac
OS 8/9, (1) only the "vacated" area will be redrawn and (2) the update region is cleared.

Regardless of whether the picture is being scrolled using the scroll arrows or the gray areas, SetOrigin
is then called to reset the window origin so that that part of the picture represented by the current
scroll position is drawn. After the correct part of the picture is drawn, the window origin is reset to
(0,0).

Finally, if BeginUpdate was called prior to the draw (that is, scrolling is being effected using the
scroll arrows), EndUpdate is called.

actionFunctionLive
actionFunctionLive is the action function for the live-feedback scroll bar.

The principal differences between this action function and the previous one are that action functions for
live-feedback scroll bars must continually scroll the window's contents, not only while the mouse button
remains down in the scroll arrows and gray areas/track, but also while the scroll box/scroller is being
dragged. Accordingly, this action function, unlike the action function for the non-live-feedback scroll
bar, is also called while the mouse button remains down in the scroll box/scroller.

If the mouse-down occurred in the scroll box/scroller, the code which sets up the scroll distance, adjusts
the sign of the scroll distance according to whether the scroll is left or right, prevents scrolling
beyond the minimum and maximum scroll values, and calls doMoveScrollBox to move the scroll box/scroller
and update the control's value, is bypassed. The call to doMoveScrollBox is bypassed because, the live-
feedback variant of the CDEF moves the scroll box/scroller and updates the control's value when the mouse-
down is in the scroll box/scroller.

After the if block has been bypassed (mouse-down in the scroll box/scroller) or executed (mouse-down in
the scroll arrows or gray area/track), the window contents are scrolled. Regardless of whether the
picture is being scrolled using the scroll box/scroller, the scroll arrows, or the gray areas/track,
SetOrigin is called to reset the window origin so that that part of the picture represented by the current
scroll position is drawn by the call to DrawPicture. After the correct part of the picture is drawn, the
window origin is reset to (0,0).

Note that this alternative approach to re-drawing the picture when scrolling is being effected using the
scroll arrows has not been dictated by the fact that this is a live-feedback action function. Either of
these two approaches will work in both live-feedback and non-live-feedback action functions.

doMoveScrollBox
doMoveScrollBox is called from within the action function to reset the control's current value to reflect
the scrolled distance, and to reposition the scroll box accordingly.

	Introduction
	Standard Controls
	Available Standard Controls
	Definition of the Term "Controls"

	Controls Addressed in This Chapter

	The Control Definition Function
	The Basic Controls, Primary Group Boxes (Text Title Variant), and User Panes
	Push Buttons
	Checkboxes
	Non-Auto-Toggling Variant
	Auto-Toggling Variant

	Radio Buttons
	Non-Auto-Toggling Variant
	Auto-Toggling Variant

	Scroll Bars
	Scroll Arrows and Gray Area/Track
	Scroll Box/Scroller
	Live Feedback Variant Not Used
	Live Feedback Variant Used

	Proportional Scroll Boxes/Scrollers

	Pop-Up Menu Buttons
	Primary Group Boxes (Text Title Variant)
	User Panes

	Activating, Deactivating, Hiding, Showing, Enabling, and Disabling Controls
	Activating and Deactivating Controls
	Activating and Deactivating Controls Other Than Scroll Bars
	Activating and Deactivating Scroll Bars

	Hiding and Showing Controls
	Enabling and Disabling Controls

	Visual Feedback From the Basic Controls
	Embedding Controls
	The Root Control
	Other Embedders
	Other Advantages of Embedding
	Drawing Order
	Hit Testing

	Latency

	Getting and Setting Control Data
	The Control Object
	Accessor Functions

	Creating Controls
	Creating Controls From 'CNTL' Resources
	Structure of a Compiled 'CNTL' Resource
	Values For Controls

	Creating 'CNTL' Resources Using Resorcerer

	Creating Controls Programmatically
	Push Button Content and Icon Alignment

	Additional Considerations — Scroll Bars
	Additional Considerations – Pop-up Menu Buttons
	Pop-up Menu Button Title Style Constants
	Pop-up Menu Button Title Width
	Menu Width Adjustment
	Menu Items and Control Values
	Adding Resource Names as Items

	Setting the Font of a Control's Title
	Control Font Style Structure
	Field Descriptions

	Control Font Style Flag Constants
	Meta Font Constants

	Setting and Getting Control IDs

	Updating, Moving, and Removing Controls
	Updating Controls
	Moving Controls
	Removing Controls

	Handling Mouse Events in Controls
	Overview
	Determining a Mouse-Down Event in a Control
	Tracking the Cursor in a Control

	Determining and Changing Control Settings, and Getting a Control's Kind
	Determining and Changing Control Settings
	Getting a Control's Kind

	Moving and Resizing Scroll Bars
	Scrolling Operations With Scroll Bars
	Scrolling Basics
	Relationship Between Document, Window, and Scroll Bar
	Distance and Direction to Scroll
	Scrolling the Pixels
	Moving the Scroll Box/Scroller
	Updating the Window

	Scrolling Example
	Alternative to SetOrigin

	Scrolling a TextEdit Document and Scrolling Using the List Manager

	Small Versions of Controls
	Main Control Manager Constants, Data Types and Functions Relevant to the Basic Controls, Primary Group Box & User Panes
	Demonstration Program Controls1 Listing
	Demonstration Program Controls1 Comments
	Demonstration Program Controls2 Listing
	Demonstration Program Controls2 Comments

